Suppr超能文献

DNA聚合酶的持续合成因子及其在正常和跨损伤DNA合成中的扩展作用。

Processivity factor of DNA polymerase and its expanding role in normal and translesion DNA synthesis.

作者信息

Zhuang Zhihao, Ai Yongxing

机构信息

Department of Chemistry and Biochemistry, 214A Drake Hall, University of Delaware, Newark, DE, 19716, USA.

出版信息

Biochim Biophys Acta. 2010 May;1804(5):1081-93. doi: 10.1016/j.bbapap.2009.06.018. Epub 2009 Jul 1.

Abstract

Clamp protein or clamp, initially identified as the processivity factor of the replicative DNA polymerase, is indispensable for the timely and faithful replication of DNA genome. Clamp encircles duplex DNA and physically interacts with DNA polymerase. Clamps from different organisms share remarkable similarities in both structure and function. Loading of clamp onto DNA requires the activity of clamp loader. Although all clamp loaders act by converting the chemical energy derived from ATP hydrolysis to mechanical force, intriguing differences exist in the mechanistic details of clamp loading. The structure and function of clamp in normal and translesion DNA synthesis has been subjected to extensive investigations. This review summarizes the current understanding of clamps from three kingdoms of life and the mechanism of loading by their cognate clamp loaders. We also discuss the recent findings on the interactions between clamp and DNA, as well as between clamp and DNA polymerase (both the replicative and specialized DNA polymerases). Lastly the role of clamp in modulating polymerase exchange is discussed in the context of translesion DNA synthesis.

摘要

夹子蛋白或夹子最初被鉴定为复制性DNA聚合酶的持续性因子,对于DNA基因组的及时和准确复制不可或缺。夹子环绕双链DNA并与DNA聚合酶发生物理相互作用。来自不同生物体的夹子在结构和功能上都有显著的相似性。将夹子加载到DNA上需要夹子加载器的活性。尽管所有夹子加载器都通过将ATP水解产生的化学能转化为机械力来发挥作用,但在夹子加载的机制细节上存在有趣的差异。夹子在正常和跨损伤DNA合成中的结构和功能已经得到了广泛的研究。这篇综述总结了目前对来自三个生命王国的夹子及其同源夹子加载器的加载机制的理解。我们还讨论了关于夹子与DNA之间以及夹子与DNA聚合酶(复制性和特殊DNA聚合酶)之间相互作用的最新发现。最后,在跨损伤DNA合成的背景下讨论了夹子在调节聚合酶交换中的作用。

相似文献

1
Processivity factor of DNA polymerase and its expanding role in normal and translesion DNA synthesis.
Biochim Biophys Acta. 2010 May;1804(5):1081-93. doi: 10.1016/j.bbapap.2009.06.018. Epub 2009 Jul 1.
2
Loading clamps for DNA replication and repair.
DNA Repair (Amst). 2009 May 1;8(5):570-8. doi: 10.1016/j.dnarep.2008.12.014. Epub 2009 Feb 11.
3
Dynamics of loading the Escherichia coli DNA polymerase processivity clamp.
Crit Rev Biochem Mol Biol. 2006 May-Jun;41(3):179-208. doi: 10.1080/10409230600648751.
6
Replication clamps and clamp loaders.
Cold Spring Harb Perspect Biol. 2013 Apr 1;5(4):a010165. doi: 10.1101/cshperspect.a010165.
7
Replication of damaged DNA by translesion synthesis in human cells.
FEBS Lett. 2005 Feb 7;579(4):873-6. doi: 10.1016/j.febslet.2004.11.029.
8
Review: The lord of the rings: Structure and mechanism of the sliding clamp loader.
Biopolymers. 2016 Aug;105(8):532-46. doi: 10.1002/bip.22827.
9
The ATP sites of AAA+ clamp loaders work together as a switch to assemble clamps on DNA.
J Biol Chem. 2014 Feb 28;289(9):5537-48. doi: 10.1074/jbc.M113.541466. Epub 2014 Jan 16.
10
Solution structure of an "open" E. coli Pol III clamp loader sliding clamp complex.
J Struct Biol. 2016 Jun;194(3):272-81. doi: 10.1016/j.jsb.2016.03.003. Epub 2016 Mar 8.

引用本文的文献

1
A bipartite interaction with the processivity clamp potentiates Pol IV-mediated TLS.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2421471122. doi: 10.1073/pnas.2421471122. Epub 2025 Feb 24.
3
Structural Basis for the Interaction Between Yeast Chromatin Assembly Factor 1 and Proliferating Cell Nuclear Antigen.
J Mol Biol. 2024 Aug 15;436(16):168695. doi: 10.1016/j.jmb.2024.168695. Epub 2024 Jul 4.
4
A bipartite interaction with the processivity clamp potentiates Pol IV-mediated TLS.
bioRxiv. 2024 May 31:2024.05.30.596738. doi: 10.1101/2024.05.30.596738.
5
PCR in Forensic Science: A Critical Review.
Genes (Basel). 2024 Mar 29;15(4):438. doi: 10.3390/genes15040438.
6
From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps.
Genes (Basel). 2022 Nov 7;13(11):2058. doi: 10.3390/genes13112058.
7
Transient State Kinetics of Apicoplast DNA Polymerase Suggests the Involvement of Accessory Factors for Efficient and Accurate DNA Synthesis.
Biochemistry. 2022 Nov 1;61(21):2319-2333. doi: 10.1021/acs.biochem.2c00446. Epub 2022 Oct 17.
8
UBE3D Is Involved in Blue Light-Induced Retinal Damage by Regulating Double-Strand Break Repair.
Invest Ophthalmol Vis Sci. 2022 Sep 1;63(10):7. doi: 10.1167/iovs.63.10.7.
9
S Phase Duration Is Determined by Local Rate and Global Organization of Replication.
Biology (Basel). 2022 May 7;11(5):718. doi: 10.3390/biology11050718.

本文引用的文献

1
The mechanism of ATP-dependent primer-template recognition by a clamp loader complex.
Cell. 2009 May 15;137(4):659-71. doi: 10.1016/j.cell.2009.03.044.
2
Crystal structure of the rad9-rad1-hus1 DNA damage checkpoint complex--implications for clamp loading and regulation.
Mol Cell. 2009 Jun 26;34(6):735-45. doi: 10.1016/j.molcel.2009.04.027. Epub 2009 May 14.
3
Mechanism of ATP-driven PCNA clamp loading by S. cerevisiae RFC.
J Mol Biol. 2009 May 8;388(3):431-42. doi: 10.1016/j.jmb.2009.03.014. Epub 2009 Mar 13.
4
Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance.
Microbiol Mol Biol Rev. 2009 Mar;73(1):134-54. doi: 10.1128/MMBR.00034-08.
5
Mechanism of replication machinery assembly as revealed by the DNA ligase-PCNA-DNA complex architecture.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4647-52. doi: 10.1073/pnas.0811196106. Epub 2009 Mar 2.
6
Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen.
J Biol Chem. 2009 Apr 17;284(16):10552-60. doi: 10.1074/jbc.M809745200. Epub 2009 Feb 10.
7
Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA.
Mol Microbiol. 2009 Feb;71(3):678-91. doi: 10.1111/j.1365-2958.2008.06553.x. Epub 2008 Dec 1.
9
Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17724-9. doi: 10.1073/pnas.0809844105. Epub 2008 Nov 10.
10
Replisome dynamics and use of DNA trombone loops to bypass replication blocks.
Mol Biosyst. 2008 Nov;4(11):1075-84. doi: 10.1039/b811097b. Epub 2008 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验