Suppr超能文献

谷氨酰胺转运体SNAT3中心的天冬酰胺76突变调节底物诱导的电导和钠离子结合。

Mutation of asparagine 76 in the center of glutamine transporter SNAT3 modulates substrate-induced conductances and Na+ binding.

作者信息

Bröer Stefan, Schneider Hans-Peter, Bröer Angelika, Deitmer Joachim W

机构信息

Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.

出版信息

J Biol Chem. 2009 Sep 18;284(38):25823-31. doi: 10.1074/jbc.M109.031013. Epub 2009 Jul 13.

Abstract

The glutamine transporter SLC38A3 (SNAT3) plays an important role in the release of glutamine from brain astrocytes and the uptake of glutamine into hepatocytes. It is related to the vesicular GABA (gamma-aminobutyric acid) transporter and the SLC36 family of proton-amino acid cotransporters. The transporter carries out electroneutral Na+-glutamine cotransport-H+ antiport. In addition, substrate-induced uncoupled cation currents are observed. Mutation of asparagine 76 to glutamine or histidine in predicted transmembrane helix 1 abolished all substrate-induced currents. Mutation of asparagine 76 to aspartate rendered the transporter Na+-independent and resulted in a gain of a large substrate-induced chloride conductance in the absence of Na+. Thus, a single residue is critical for coupled and uncoupled ion flows in the glutamine transporter SNAT3. Homology modeling of SNAT3 along the structure of the related benzyl-hydantoin permease from Microbacterium liquefaciens reveals that Asn-76 is likely to be located in the center of the membrane close to the translocation pore and forms part of the predicted Na+ -binding site.

摘要

谷氨酰胺转运体SLC38A3(SNAT3)在脑星形胶质细胞释放谷氨酰胺以及肝细胞摄取谷氨酰胺过程中发挥重要作用。它与囊泡型γ-氨基丁酸(GABA)转运体以及质子-氨基酸共转运体的SLC36家族相关。该转运体进行电中性的Na⁺-谷氨酰胺共转运-H⁺反向转运。此外,还观察到底物诱导的非偶联阳离子电流。预测的跨膜螺旋1中第76位天冬酰胺突变为谷氨酰胺或组氨酸会消除所有底物诱导的电流。第76位天冬酰胺突变为天冬氨酸使转运体不依赖Na⁺,并在无Na⁺的情况下导致出现大量底物诱导的氯离子电导增加。因此,单个残基对于谷氨酰胺转运体SNAT3中的偶联和非偶联离子流至关重要。根据液化微杆菌相关苄基乙内酰脲通透酶的结构对SNAT3进行同源建模显示,Asn-76可能位于靠近转运孔的膜中心,并构成预测的Na⁺结合位点的一部分。

相似文献

1
Mutation of asparagine 76 in the center of glutamine transporter SNAT3 modulates substrate-induced conductances and Na+ binding.
J Biol Chem. 2009 Sep 18;284(38):25823-31. doi: 10.1074/jbc.M109.031013. Epub 2009 Jul 13.
3
Rapid downregulation of the rat glutamine transporter SNAT3 by a caveolin-dependent trafficking mechanism in Xenopus laevis oocytes.
Am J Physiol Cell Physiol. 2010 Nov;299(5):C1047-57. doi: 10.1152/ajpcell.00209.2010. Epub 2010 Aug 25.
5
Substrate-dependent interference of carbonic anhydrases with the glutamine transporter SNAT3-induced conductance.
Cell Physiol Biochem. 2011;27(1):79-90. doi: 10.1159/000325208. Epub 2011 Feb 11.
6
7
The sodium-bicarbonate cotransporter NBCe1 supports glutamine efflux via SNAT3 (SLC38A3) co-expressed in Xenopus oocytes.
Pflugers Arch. 2008 Feb;455(5):885-93. doi: 10.1007/s00424-007-0351-y. Epub 2007 Oct 2.
8
Astroglial glutamine transport by system N is upregulated by glutamate.
Glia. 2004 Dec;48(4):298-310. doi: 10.1002/glia.20081.

引用本文的文献

1
Sequence analysis and function of mosquito aeCCC2 and Drosophila Ncc83 orthologs.
Insect Biochem Mol Biol. 2022 Apr;143:103729. doi: 10.1016/j.ibmb.2022.103729. Epub 2022 Feb 9.
2
Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state.
Nat Struct Mol Biol. 2018 Jun;25(6):522-527. doi: 10.1038/s41594-018-0072-2. Epub 2018 Jun 5.
3
Rapid sensing of l-leucine by human and murine hypothalamic neurons: Neurochemical and mechanistic insights.
Mol Metab. 2018 Apr;10:14-27. doi: 10.1016/j.molmet.2018.01.021. Epub 2018 Feb 7.
4
SNAT7 is the primary lysosomal glutamine exporter required for extracellular protein-dependent growth of cancer cells.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):E3602-E3611. doi: 10.1073/pnas.1617066114. Epub 2017 Apr 17.
5
The SLC38 family of sodium-amino acid co-transporters.
Pflugers Arch. 2014 Jan;466(1):155-72. doi: 10.1007/s00424-013-1393-y. Epub 2013 Nov 6.
6
Membrane topological structure of neutral system N/A amino acid transporter 4 (SNAT4) protein.
J Biol Chem. 2011 Nov 4;286(44):38086-38094. doi: 10.1074/jbc.M111.220277. Epub 2011 Sep 14.
8
Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy.
Neurotherapeutics. 2010 Oct;7(4):452-70. doi: 10.1016/j.nurt.2010.05.015.

本文引用的文献

1
Structure of a prokaryotic virtual proton pump at 3.2 A resolution.
Nature. 2009 Aug 20;460(7258):1040-3. doi: 10.1038/nature08201. Epub 2009 Jul 5.
2
Structure and mechanism of an amino acid antiporter.
Science. 2009 Jun 19;324(5934):1565-8. doi: 10.1126/science.1173654. Epub 2009 May 28.
3
Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP.
Nature. 2009 Mar 5;458(7234):47-52. doi: 10.1038/nature07819.
4
Complementary expression of SN1 and SAT2 in the islets of Langerhans suggests concerted action of glutamine transport in the regulation of insulin secretion.
Biochem Biophys Res Commun. 2009 Apr 10;381(3):378-82. doi: 10.1016/j.bbrc.2009.02.062. Epub 2009 Feb 20.
6
The major amino acid transporter superfamily has a similar core structure as Na+-galactose and Na+-leucine transporters.
Mol Membr Biol. 2008 Sep;25(6-7):567-70. doi: 10.1080/09687680802541177. Epub 2008 Nov 21.
7
Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter.
Science. 2008 Oct 31;322(5902):709-13. doi: 10.1126/science.1164440. Epub 2008 Oct 16.
8
The enlightening encounter between structure and function in the NhaA Na+-H+ antiporter.
Trends Biochem Sci. 2008 Sep;33(9):435-43. doi: 10.1016/j.tibs.2008.06.007. Epub 2008 Aug 15.
9
Mechanism for alternating access in neurotransmitter transporters.
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10338-43. doi: 10.1073/pnas.0804659105. Epub 2008 Jul 22.
10
The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport.
Science. 2008 Aug 8;321(5890):810-4. doi: 10.1126/science.1160406. Epub 2008 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验