Poater Albert
Modeling Lab for Nanostructures and Catalysis (MoLNaC), Dipartimento di Chimica, Università degli Studi di Salerno, via Ponte don Melillo, Fisciano (SA) 84084, Italy.
J Phys Chem A. 2009 Aug 6;113(31):9030-40. doi: 10.1021/jp9040716.
DFT calculations give insight into the formation of peroxo intermediates 1-8 from a series of Cu(I) complexes bearing N-hexadentated macrocyclic dinucleating ligands, suffering an oxidation by their interaction with molecular oxygen. The discussion is thus based on the side-on peroxo cores, omitting the case of complex 8 for which the most favored structure is the trans-peroxo due to para substitution and the steric encumbrance produced by the methylation of the aminic N atoms. The frontier molecular orbital theory explains deeply the O2 binding to the Cu(I) complexes, giving key relationships between the energy of particular orbitals of the copper complex before the O2 binding and the corresponding ones for the free O2. On the other hand, tools such as the energy decomposition analysis and Mayer bond orders reveal the slight differences due to the different types of ligands.
密度泛函理论(DFT)计算有助于深入了解一系列带有N-六齿大环双核配体的Cu(I)配合物与分子氧相互作用发生氧化反应形成过氧中间体1-8的过程。因此,讨论基于侧基过氧核心,不考虑配合物8的情况,因为由于对位取代以及氨基氮原子甲基化产生的空间位阻,其最有利的结构是反式过氧结构。前沿分子轨道理论深入解释了O₂与Cu(I)配合物的结合,给出了O₂结合前铜配合物特定轨道能量与游离O₂相应轨道能量之间的关键关系。另一方面,诸如能量分解分析和迈耶键级等工具揭示了由于配体类型不同而产生的细微差异。