Essiz Sebnem G, Coalson Rob D
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
J Phys Chem B. 2009 Aug 6;113(31):10859-69. doi: 10.1021/jp900745u.
Dynamic linear response theory is adapted to the problem of computing the time evolution of the atomic coordinates of a protein in response to the unbinding of a ligand molecule from a binding pocket within the protein. When the ligand dissociates from the molecule, the protein molecule finds itself out of equilibrium and its configuration begins to change, ultimately coming to a new stable configuration corresponding to equilibrium in a force field that lacks the ligand-protein interaction terms. Dynamic linear response theory (LRT) relates the nonequilibrium motion of the protein atoms that ensues after the ligand molecule dissociates to equilibrium dynamics in the force field, or equivalently, on the potential energy surface (PES) relevant to the unliganded protein. In general, the connection implied by linear response theory holds only when the ligand-protein force field is small. However, in the case where the PES of the unliganded protein system is a quadratic (harmonic oscillator) function of the coordinates, and the force of the ligand upon the protein molecule in the ligand-bound conformation is constant (the force on each atom in the protein is independent of the location of the atom), dynamic LRT is exact for any ligand-protein force field strength. An analogous statement can be made for the case where the atoms in the protein are subjected to frictional and random noise forces in accord with the Langevin equation (to account for interaction of the protein with solvent, for example). We numerically illustrate the application of dynamic LRT for a simple harmonic oscillator model of the ferric binding protein, and for an analogous model of T4 lysozyme. Using a physically appropriate value of the viscosity of water to guide the choice of friction parameters, we find relaxation time scales of residue-residue distances on the order of several hundred ps. Comparison is made to relevant experimental measurements.
动态线性响应理论被应用于计算蛋白质原子坐标随配体分子从蛋白质内部结合口袋解离的时间演化问题。当配体从分子上解离时,蛋白质分子会发现自身处于非平衡状态,其构型开始发生变化,最终达到一个新的稳定构型,该构型对应于一个缺乏配体 - 蛋白质相互作用项的力场中的平衡状态。动态线性响应理论(LRT)将配体分子解离后蛋白质原子的非平衡运动与力场中的平衡动力学联系起来,或者等效地,与未结合配体的蛋白质相关的势能面(PES)联系起来。一般来说,线性响应理论所暗示的这种联系仅在配体 - 蛋白质力场较小时成立。然而,在未结合配体的蛋白质系统的势能面是坐标的二次(简谐振子)函数,且配体在结合配体构象中对蛋白质分子的力是恒定的(蛋白质中每个原子上的力与该原子的位置无关)的情况下,动态LRT对于任何配体 - 蛋白质力场强度都是精确的。对于蛋白质中的原子根据朗之万方程受到摩擦和随机噪声力的情况(例如,用于解释蛋白质与溶剂的相互作用),也可以做出类似陈述。我们通过数值方法说明了动态LRT在铁结合蛋白的简谐振子模型以及T4溶菌酶的类似模型中的应用。使用水的物理上合适的粘度值来指导摩擦参数的选择,我们发现残基 - 残基距离的弛豫时间尺度在几百皮秒的量级。并与相关实验测量结果进行了比较。