Jerbi Karim, Freyermuth Samson, Minotti Lorella, Kahane Philippe, Berthoz Alain, Lachaux Jean-Philippe
Laboratoire de Physiologie de la Perception et de l'Action, UMR 7152, Collège de France, CNRS, Paris, France.
Int Rev Neurobiol. 2009;86:159-68. doi: 10.1016/S0074-7742(09)86012-1.
A large body of evidence from animal studies indicates that motor intention can be decoded via multiple single-unit recordings or from local field potentials (LFPs) recorded not only in primary motor cortex, but also in premotor or parietal areas. In humans, reports of invasive data acquisition for the purpose of BCI developments are less numerous and signal selection for optimal control still remains poorly investigated. Here we report on our recent implementation of a real-time analysis platform for the investigation of ongoing oscillations in human intracerebral recordings and review various results illustrating its utility for the development of novel brain-computer and brain-robot interfaces. Our findings show that the insight gained both from off-line experiments and from online functional exploration can be used to guide future selection of the sites and frequency bands to be used in a translation algorithm such as the one needed for a BCI-driven cursor control. Overall, the findings reported with our online spectral analysis platforms (Brain TV and Brain Ball) indicate the feasibility of online functional exploration via intracranial recordings in humans and outline the direct benefits of this approach for the improvement of invasive BCI strategies in humans. In particular, our findings suggest that current BCI performance may be improved by using signals recorded from various systems previously unexplored in the context of BCI research such as the oscillatory activity recorded in the oculomotor networks as well as higher cognitive processes including working memory, attention, and mental calculation networks. Finally, we discuss current limitations of the methodology and outline future paths for innovative BCI research.
大量动物研究证据表明,运动意图不仅可以通过在初级运动皮层,还可以在前运动皮层或顶叶区域记录的多个单神经元活动或局部场电位(LFP)进行解码。在人类中,出于脑机接口(BCI)开发目的进行侵入性数据采集的报告较少,并且针对最佳控制的信号选择仍未得到充分研究。在此,我们报告我们最近实施的一个实时分析平台,用于研究人类脑内记录中的持续振荡,并回顾各种结果,这些结果说明了该平台在新型脑机接口和脑机机器人接口开发中的实用性。我们的研究结果表明,从离线实验和在线功能探索中获得的见解可用于指导未来在翻译算法(如BCI驱动的光标控制所需的算法)中使用的位点和频段的选择。总体而言,我们通过在线频谱分析平台(Brain TV和Brain Ball)报告的研究结果表明,通过人类颅内记录进行在线功能探索是可行的,并概述了这种方法对改善人类侵入性BCI策略的直接益处。特别是,我们的研究结果表明,通过使用在BCI研究背景下以前未探索的各种系统记录的信号,如动眼神经网络中记录的振荡活动以及包括工作记忆、注意力和心算网络在内的更高认知过程,可以提高当前BCI的性能。最后,我们讨论了该方法当前的局限性,并概述了创新BCI研究的未来方向。