Saint-Michel Edouard, Giannone Grégory, Choquet Daniel, Thoumine Olivier
Physiologie Cellulaire de la synapse, Centre National de la Recherche Scientifique and University of Bordeaux, Bordeaux, France.
Biophys J. 2009 Jul 22;97(2):480-9. doi: 10.1016/j.bpj.2009.04.044.
We report what to our knowledge is a new method to characterize kinetic rates between cell-surface-attached adhesion molecules. Cells expressing specific membrane receptors are surface-labeled with quantum dots coated with their respective ligands. The progressive diminution in the total number of surface-diffusing quantum dots tracked over time collectively reflects intrinsic ligand/receptor interaction kinetics. The probability of quantum dot detachment is modeled using a stochastic analysis of bond formation and dissociation, with a small number of ligand/receptor pairs, resulting in a set of coupled differential equations that are solved numerically. Comparison with the experimental data provides an estimation of the kinetic rates, together with the mean number of ligands per quantum dot, as three adjustable parameters. We validate this approach by studying the calcium-dependent neurexin/neuroligin interaction, which plays an important role in synapse formation. Using primary neurons expressing neuroligin-1 and quantum dots coated with purified neurexin-1beta, we determine the kinetic rates between these two binding partners and compare them with data obtained using other techniques. Using specific molecular constructs, we also provide interesting information about the effects of neurexin and neuroligin dimerization on the kinetic rates. As it stands, this simple technique should be applicable to many types of biological ligand/receptor pairs.
据我们所知,我们报告了一种表征细胞表面附着的粘附分子之间动力学速率的新方法。表达特定膜受体的细胞用涂有各自配体的量子点进行表面标记。随着时间的推移,对表面扩散的量子点总数的逐渐减少进行跟踪,这共同反映了内在的配体/受体相互作用动力学。使用少量配体/受体对的键形成和解离的随机分析对量子点脱离的概率进行建模,从而得到一组通过数值求解的耦合微分方程。将其与实验数据进行比较,可估计动力学速率以及每个量子点上配体的平均数,这三个参数是可调的。我们通过研究在突触形成中起重要作用的钙依赖性神经纤毛蛋白/神经连接蛋白相互作用来验证这种方法。使用表达神经连接蛋白-1的原代神经元和涂有纯化的神经纤毛蛋白-1β的量子点,我们确定了这两个结合伙伴之间的动力学速率,并将其与使用其他技术获得的数据进行比较。使用特定的分子构建体,我们还提供了有关神经纤毛蛋白和神经连接蛋白二聚化对动力学速率影响的有趣信息。就目前而言,这种简单的技术应该适用于许多类型的生物配体/受体对。