Suppr超能文献

配体场扭矩:一种用于确定配体旋转偏好的π型电子驱动力。

Ligand field torque: a pi-type electronic driving force for determining ligand rotational preferences.

作者信息

Deeth Robert J, Anastasi Anna E, Randell Kris

机构信息

Inorganic Computational Chemistry Group, Department of Chemistry, University of Warwick, Coventry, UK CV4 7AL.

出版信息

Dalton Trans. 2009 Aug 14(30):6007-12. doi: 10.1039/b905154f. Epub 2009 Jun 23.

Abstract

Transition metal complexes with triply-degenerate T ground states are formally Jahn-Teller active but do not usually display the significant bond length distortions familiar from their E ground state counterparts like d(9) Cu(II). The electronic 'asymmetry' for T-state systems lies in the d(pi) orbitals, which interact with the ligands relatively weakly compared to the stronger sigma-type interactions for E-state systems. However, in combination with asymmetric M-L pi bonding, T-type systems have an additional mechanism for relieving the electronic strain. Density functional theory, ligand field theory and ligand field molecular mechanics calculations are used to show how rotations around the M-L bonds can affect their pi-pi (d(pi)-L(pi)) interactions and lead to significant energy lowering. For example, d(6) Fe(OH(2))(6), which has a (5)T(g) state in cubic T(h) symmetry, 'distorts' to an S(6) structure 4.4 kcal mol(-1) lower in energy (by DFT) but with six equal Fe-O distances via Fe-O rotations of approximately 20 degrees and thus masquerades as an apparently regular geometry. Using model systems, we show that this effect is not restricted to formally Jahn-Teller active complexes. The combination of asymmetric pi bonding and asymmetric d(pi) orbital occupations can generate an M-L 'torque' worth up to 6 kcal mol(-1) per bond which can 'lock' the ligand in a particular orientation relative to the partially-occupied d orbital(s). The effect is particularly marked for imidazole, the donor group of histidine, which, in a model low-spin d(5) Fe(III) system, shows almost no orientational preference in its neutral form but a very strong (approximately 6 kcal mol(-1)) orientational preference in its deprotonated form.

摘要

具有三重简并(T)基态的过渡金属配合物在形式上是 Jahn-Teller 活性的,但通常不会表现出像(d^9) (Cu(II))等具有(E)基态的类似物所常见的显著键长畸变。(T)态体系的电子“不对称性”存在于(d\pi)轨道中,与(E)态体系较强的(\sigma)型相互作用相比,(d\pi)轨道与配体的相互作用相对较弱。然而,与不对称的(M - L\pi)键合相结合时,(T)型体系有一种额外的机制来缓解电子应变。密度泛函理论、配体场理论和配体场分子力学计算被用于展示围绕(M - L)键的旋转如何影响它们的(\pi - \pi)((d\pi - L\pi))相互作用并导致显著的能量降低。例如,在立方(T_h)对称性中具有((^5T_g))态的(d^6) ([Fe(OH_2)_6]^{2 +}),通过约(20)度的(Fe - O)旋转“畸变”为能量低(4.4) (kcal) (mol^{-1})(通过密度泛函理论)的(S_6)结构,但具有六个相等的(Fe - O)距离,因此伪装成一种看似规则的几何形状。使用模型体系,我们表明这种效应并不局限于形式上 Jahn-Teller 活性的配合物。不对称(\pi)键合和不对称(d\pi)轨道占据的结合可以产生每个键高达(6) (kcal) (mol^{-1})的(M - L)“扭矩”,这可以将配体“锁定”在相对于部分占据的(d)轨道的特定取向。对于组氨酸的供体基团咪唑,这种效应尤为明显,在一个模型低自旋(d^5) (Fe(III))体系中,咪唑在中性形式下几乎没有取向偏好,但在其去质子化形式下具有非常强的(约(6) (kcal) (mol^{-1}))取向偏好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验