Nagy Norbert, Szuts Viktória, Horváth Zoltán, Seprényi György, Farkas Attila S, Acsai Károly, Prorok János, Bitay Miklós, Kun Attila, Pataricza János, Papp Julius Gy, Nánási Péter P, Varró András, Tóth András
Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.
J Mol Cell Cardiol. 2009 Nov;47(5):656-63. doi: 10.1016/j.yjmcc.2009.07.019. Epub 2009 Jul 24.
Small-conductance calcium-activated potassium channels (SK channels) have a significant role in neurons. Since they directly integrate calcium handling with repolarization, in heart their role would be particularly important. However, their contribution to cardiac repolarization is still unclear. A previous study reported a significant lengthening effect of apamin, a selective SK channel inhibitor, on the action potential duration in atrial and ventricular mouse cardiomyocytes and human atrial cells. They concluded that these channels provide an important functional link between intracellular calcium handling and action potential kinetics. These findings seriously contradict our studies on cardiac "repolarization reserve", where we demonstrated that inhibition of a potassium current is not likely to cause excessive APD lengthening, since its decrease is mostly compensated by a secondary increase in other, unblocked potassium currents. To clarify this contradiction, we reinvestigated the role of the SK current in cardiac repolarization, using conventional microelectrode and voltage-clamp techniques in rat and dog atrial and ventricular multicellular preparations, and in isolated cardiomyocytes. SK2 channel expression was confirmed with immunoblot technique and confocal microscopy. We found, that while SK2 channels are expressed in the myocardium, a full blockade of these channels by 100 nM apamin--in contrast to the previous report--did not cause measurable electrophysiological changes in mammalian myocardium, even when the repolarization reserve was blunted. These results clearly demonstrate that in rat, dog and human ventricular cells under normal physiological conditions--though present--SK2 channels are not active and do not contribute to action potential repolarization.
小电导钙激活钾通道(SK通道)在神经元中发挥着重要作用。由于它们直接将钙处理与复极化整合在一起,因此在心脏中其作用尤为重要。然而,它们对心脏复极化的贡献仍不清楚。先前的一项研究报道,选择性SK通道抑制剂蜂毒明肽对小鼠心房和心室心肌细胞以及人心房细胞的动作电位持续时间有显著的延长作用。他们得出结论,这些通道在细胞内钙处理和动作电位动力学之间提供了重要的功能联系。这些发现与我们关于心脏“复极化储备”的研究严重矛盾,在我们的研究中,我们证明抑制钾电流不太可能导致动作电位持续时间过度延长,因为其减少大多被其他未被阻断的钾电流的继发性增加所补偿。为了澄清这一矛盾,我们使用传统的微电极和电压钳技术,在大鼠和犬的心房和心室多细胞标本以及分离的心肌细胞中,重新研究了SK电流在心脏复极化中的作用。通过免疫印迹技术和共聚焦显微镜确认了SK2通道的表达。我们发现,虽然SK2通道在心肌中表达,但与先前的报道相反,100 nM蜂毒明肽对这些通道的完全阻断在哺乳动物心肌中并未引起可测量的电生理变化,即使复极化储备减弱时也是如此。这些结果清楚地表明,在正常生理条件下,大鼠、犬和人的心室细胞中——尽管存在——SK2通道并不活跃,对动作电位复极化没有贡献。