Suppr超能文献

无头绪,一个在果蝇中保守的线粒体亚细胞定位所必需的基因,与 parkin 在遗传上相互作用。

Clueless, a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with parkin.

机构信息

Department of Embryology/Howard Hughes Medical Institute, Carnegie Institution, 3520 San Martin Drive, Baltimore, MD 21218, USA.

出版信息

Dis Model Mech. 2009 Sep-Oct;2(9-10):490-9. doi: 10.1242/dmm.002378. Epub 2009 Jul 28.

Abstract

Parkinson's disease has been linked to altered mitochondrial function. Mutations in parkin (park), the Drosophila ortholog of a human gene that is responsible for many familial cases of Parkinson's disease, shorten life span, abolish fertility and disrupt mitochondrial structure. However, the role played by Park in mitochondrial function remains unclear. Here, we describe a novel Drosophila gene, clueless (clu), which encodes a highly conserved tetratricopeptide repeat protein that is related closely to the CluA protein of Dictyostelium, Clu1 of Saccharomyces cerevisiae and to similar proteins in diverse metazoan eukaryotes from Arabidopsis to humans. Like its orthologs, loss of Drosophila clu causes mitochondria to cluster within cells. We find that strong clu mutations resemble park mutations in their effects on mitochondrial function and that the two genes interact genetically. Conversely, mitochondria in park homozygotes become highly clustered. We propose that Clu functions in a novel pathway that positions mitochondria within the cell based on their physiological state. Disruption of the Clu pathway may enhance oxidative damage, alter gene expression, cause mitochondria to cluster at microtubule plus ends, and lead eventually to mitochondrial failure.

摘要

帕金森病与线粒体功能改变有关。帕金森基因(park)的突变,该基因是导致许多家族性帕金森病的人类基因的果蝇同源物,缩短了寿命,消除了生育能力并破坏了线粒体结构。但是,Park 在线粒体功能中的作用仍不清楚。在这里,我们描述了一个新的果蝇基因,clueless(clu),它编码一种高度保守的四肽重复蛋白,与 Dictyostelium 的 CluA 蛋白,酿酒酵母的 Clu1 和来自拟南芥到人类的各种后生动物真核生物的类似蛋白密切相关。像其同源物一样,果蝇 clu 的缺失导致线粒体在细胞内聚集。我们发现,强 clu 突变在对线粒体功能的影响上类似于 park 突变,并且这两个基因在遗传上相互作用。相反,park 纯合子中的线粒体变得高度聚集。我们提出 Clu 在线粒体在细胞内定位的新途径中起作用,该途径基于它们的生理状态。Clu 途径的破坏可能会增强氧化损伤,改变基因表达,导致线粒体聚集在微管正端,并最终导致线粒体衰竭。

相似文献

1
Clueless, a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with parkin.
Dis Model Mech. 2009 Sep-Oct;2(9-10):490-9. doi: 10.1242/dmm.002378. Epub 2009 Jul 28.
2
Clueless, a protein required for mitochondrial function, interacts with the PINK1-Parkin complex in Drosophila.
Dis Model Mech. 2015 Jun;8(6):577-89. doi: 10.1242/dmm.019208. Epub 2015 Apr 20.
3
Drosophila clueless is involved in Parkin-dependent mitophagy by promoting VCP-mediated Marf degradation.
Hum Mol Genet. 2016 May 15;25(10):1946-1964. doi: 10.1093/hmg/ddw067. Epub 2016 Feb 29.
4
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.
Nature. 2006 Jun 29;441(7097):1162-6. doi: 10.1038/nature04779. Epub 2006 May 3.
6
Clueless forms dynamic, insulin-responsive bliss particles sensitive to stress.
Dev Biol. 2020 Mar 15;459(2):149-160. doi: 10.1016/j.ydbio.2019.12.004. Epub 2019 Dec 16.
7
The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process.
Biochem Biophys Res Commun. 2009 Jan 16;378(3):518-23. doi: 10.1016/j.bbrc.2008.11.086. Epub 2008 Dec 3.
8
Clueless regulates aPKC activity and promotes self-renewal cell fate in Drosophila lgl mutant larval brains.
Dev Biol. 2013 Sep 15;381(2):353-64. doi: 10.1016/j.ydbio.2013.06.031. Epub 2013 Jul 5.

引用本文的文献

3
Mitochondrial Proteases and Their Roles in Mitophagy in Plants, Animals, and Yeast.
Plant Cell Physiol. 2025 Apr 23. doi: 10.1093/pcp/pcaf038.
4
The Drosophila ribonucleoprotein Clueless is required for ribosome biogenesis in vivo.
J Biol Chem. 2024 Dec;300(12):107946. doi: 10.1016/j.jbc.2024.107946. Epub 2024 Oct 30.
5
Multi-trait modeling and machine learning discover new markers associated with stem traits in alfalfa.
Front Plant Sci. 2024 Sep 9;15:1429976. doi: 10.3389/fpls.2024.1429976. eCollection 2024.
7
CLUH maintains functional mitochondria and translation in motoneuronal axons and prevents peripheral neuropathy.
Sci Adv. 2024 May 31;10(22):eadn2050. doi: 10.1126/sciadv.adn2050. Epub 2024 May 29.
8
Mitochondrial Differentiation during Spermatogenesis: Lessons from .
Int J Mol Sci. 2024 Apr 3;25(7):3980. doi: 10.3390/ijms25073980.
9
Did mitophagy follow the origin of mitochondria?
Autophagy. 2024 May;20(5):985-993. doi: 10.1080/15548627.2024.2307215. Epub 2024 Feb 15.

本文引用的文献

1
Manipulating the metazoan mitochondrial genome with targeted restriction enzymes.
Science. 2008 Jul 25;321(5888):575-7. doi: 10.1126/science.1160226.
2
Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):7070-5. doi: 10.1073/pnas.0711845105. Epub 2008 Apr 28.
3
Large-scale chemical dissection of mitochondrial function.
Nat Biotechnol. 2008 Mar;26(3):343-51. doi: 10.1038/nbt1387. Epub 2008 Feb 24.
4
The PINK1/Parkin pathway regulates mitochondrial morphology.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1638-43. doi: 10.1073/pnas.0709336105. Epub 2008 Jan 29.
5
The Sf1-related nuclear hormone receptor Hr39 regulates Drosophila female reproductive tract development and function.
Development. 2008 Jan;135(2):311-21. doi: 10.1242/dev.015156. Epub 2007 Dec 12.
6
The carnegie protein trap library: a versatile tool for Drosophila developmental studies.
Genetics. 2007 Mar;175(3):1505-31. doi: 10.1534/genetics.106.065961. Epub 2006 Dec 28.
7
The Drosophila parkin homologue is required for normal mitochondrial dynamics during spermiogenesis.
Dev Biol. 2007 Mar 1;303(1):108-20. doi: 10.1016/j.ydbio.2006.10.038. Epub 2006 Nov 10.
8
Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila.
Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13520-5. doi: 10.1073/pnas.0604661103. Epub 2006 Aug 24.
9
Milton controls the early acquisition of mitochondria by Drosophila oocytes.
Development. 2006 Sep;133(17):3371-7. doi: 10.1242/dev.02514. Epub 2006 Aug 3.
10
Neurodegenerative disease: pink, parkin and the brain.
Nature. 2006 Jun 29;441(7097):1058. doi: 10.1038/4411058a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验