Suppr超能文献

通过天然丰度下的13CH3和13CH2弛豫色散映射配体重组动力学。

Mapping the dynamics of ligand reorganization via 13CH3 and 13CH2 relaxation dispersion at natural abundance.

作者信息

Peng Jeffrey W, Wilson Brian D, Namanja Andrew T

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

J Biomol NMR. 2009 Sep;45(1-2):171-83. doi: 10.1007/s10858-009-9349-4. Epub 2009 Jul 29.

Abstract

Flexible ligands pose challenges to standard structure-activity studies since they frequently reorganize their conformations upon protein binding and catalysis. Here, we demonstrate the utility of side chain (13)C relaxation dispersion measurements to identify and quantify the conformational dynamics that drive this reorganization. The dispersion measurements probe methylene (13)CH(2) and methyl (13)CH(3) groups; the latter are highly prevalent side chain moieties in known drugs. Combining these side chain studies with existing backbone dispersion studies enables a comprehensive investigation of mus-ms conformational dynamics related to binding and catalysis. We perform these measurements at natural (13)C abundance, in congruence with common pharmaceutical research settings. We illustrate these methods through a study of the interaction of a phosphopeptide ligand with the peptidyl-prolyl isomerase, Pin1. The results illuminate the side-chain moieties that undergo conformational readjustments upon complex formation. In particular, we find evidence that multiple exchange processes influence the side chain dispersion profiles. Collectively, our studies illustrate how side-chain relaxation dispersion can shed light on ligand conformational transitions required for activity, and thereby suggest strategies for its optimization.

摘要

柔性配体对标准的构效关系研究提出了挑战,因为它们在与蛋白质结合及催化过程中常常会重新组织其构象。在此,我们展示了侧链¹³C弛豫色散测量在识别和量化驱动这种重新组织的构象动力学方面的效用。色散测量探测亚甲基¹³CH₂和甲基¹³CH₃基团;后者是已知药物中高度普遍的侧链部分。将这些侧链研究与现有的主链色散研究相结合,能够全面研究与结合和催化相关的毫秒级构象动力学。我们在天然¹³C丰度下进行这些测量,这与常见的药物研究环境一致。我们通过研究磷酸肽配体与肽基脯氨酰异构酶Pin1的相互作用来说明这些方法。结果揭示了在复合物形成时经历构象重新调整的侧链部分。特别地,我们发现有证据表明多个交换过程影响侧链色散谱。总体而言,我们的研究说明了侧链弛豫色散如何能够阐明活性所需的配体构象转变,从而为其优化提出策略。

相似文献

1
Mapping the dynamics of ligand reorganization via 13CH3 and 13CH2 relaxation dispersion at natural abundance.
J Biomol NMR. 2009 Sep;45(1-2):171-83. doi: 10.1007/s10858-009-9349-4. Epub 2009 Jul 29.
2
Dynamics of ligand binding from 13C NMR relaxation dispersion at natural abundance.
J Am Chem Soc. 2008 Oct 29;130(43):14060-1. doi: 10.1021/ja805839y. Epub 2008 Oct 4.
3
Molecular Insights into the Intrinsic Dynamics and Their Roles During Catalysis in Pin1 Peptidyl-prolyl Isomerase.
J Phys Chem B. 2022 Jul 21;126(28):5185-5193. doi: 10.1021/acs.jpcb.2c02095. Epub 2022 Jul 7.
4
Structure and dynamics of pin1 during catalysis by NMR.
J Mol Biol. 2007 Apr 13;367(5):1370-81. doi: 10.1016/j.jmb.2007.01.049. Epub 2007 Jan 24.
5
Toward flexibility-activity relationships by NMR spectroscopy: dynamics of Pin1 ligands.
J Am Chem Soc. 2010 Apr 28;132(16):5607-9. doi: 10.1021/ja9096779.
6
Thermodynamics of phosphopeptide binding to the human peptidyl prolyl cis/trans isomerase Pin1.
Biochemistry. 2006 Oct 3;45(39):12125-35. doi: 10.1021/bi0608820.
7
Stereospecific gating of functional motions in Pin1.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12289-94. doi: 10.1073/pnas.1019382108. Epub 2011 Jul 11.
8
1H, 13C and 15N backbone resonance assignment of the peptidyl-prolyl cis-trans isomerase Pin1.
J Biomol NMR. 2002 Jun;23(2):163-4. doi: 10.1023/a:1016364324096.
9
Transient domain interactions enhance the affinity of the mitotic regulator Pin1 toward phosphorylated peptide ligands.
Structure. 2013 Oct 8;21(10):1769-77. doi: 10.1016/j.str.2013.07.016. Epub 2013 Aug 22.
10
Conformational exchange of aromatic side chains characterized by L-optimized TROSY-selected ¹³C CPMG relaxation dispersion.
J Biomol NMR. 2012 Sep;54(1):9-14. doi: 10.1007/s10858-012-9656-z. Epub 2012 Jul 26.

引用本文的文献

1
Pin1 WW Domain Ligand Library Synthesized with an Easy Solid-Phase Phosphorylating Reagent.
Biochemistry. 2024 Nov 5;63(21):2803-2815. doi: 10.1021/acs.biochem.4c00231. Epub 2024 Oct 8.
2
Allostery and Epistasis: Emergent Properties of Anisotropic Networks.
Entropy (Basel). 2020 Jun 16;22(6):667. doi: 10.3390/e22060667.
3
Protein Allostery at Atomic Resolution.
Angew Chem Int Ed Engl. 2020 Dec 1;59(49):22132-22139. doi: 10.1002/anie.202008734. Epub 2020 Sep 30.
4
Hinge-Shift Mechanism Modulates Allosteric Regulations in Human Pin1.
J Phys Chem B. 2018 May 31;122(21):5623-5629. doi: 10.1021/acs.jpcb.7b11971. Epub 2018 Feb 7.
5
Label-free NMR-based dissociation kinetics determination.
J Biomol NMR. 2017 Dec;69(4):229-235. doi: 10.1007/s10858-017-0150-5. Epub 2017 Nov 16.
7
Ligand-detected relaxation dispersion NMR spectroscopy: dynamics of preQ1-RNA binding.
Angew Chem Int Ed Engl. 2015 Jan 7;54(2):560-3. doi: 10.1002/anie.201409779. Epub 2014 Nov 17.
9
Interdomain interactions support interdomain communication in human Pin1.
Biochemistry. 2013 Oct 8;52(40):6968-81. doi: 10.1021/bi401057x. Epub 2013 Sep 24.
10
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
J Biomol NMR. 2011 Sep;51(1-2):21-34. doi: 10.1007/s10858-011-9538-9. Epub 2011 Sep 27.

本文引用的文献

2
Dynamics of ligand binding from 13C NMR relaxation dispersion at natural abundance.
J Am Chem Soc. 2008 Oct 29;130(43):14060-1. doi: 10.1021/ja805839y. Epub 2008 Oct 4.
3
Dependence of amino acid side chain 13C shifts on dihedral angle: application to conformational analysis.
J Am Chem Soc. 2008 Aug 20;130(33):11097-105. doi: 10.1021/ja802729t. Epub 2008 Jul 25.
4
Consistent blind protein structure generation from NMR chemical shift data.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4685-90. doi: 10.1073/pnas.0800256105. Epub 2008 Mar 7.
6
Prolyl cis-trans isomerization as a molecular timer.
Nat Chem Biol. 2007 Oct;3(10):619-29. doi: 10.1038/nchembio.2007.35.
7
Protein structure determination from NMR chemical shifts.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9615-20. doi: 10.1073/pnas.0610313104. Epub 2007 May 29.
8
Inhibitors of hepatitis C virus NS3.4A protease. Effect of P4 capping groups on inhibitory potency and pharmacokinetics.
Bioorg Med Chem Lett. 2007 Jun 15;17(12):3406-11. doi: 10.1016/j.bmcl.2007.03.090. Epub 2007 Apr 3.
9
A single-quantum methyl 13C-relaxation dispersion experiment with improved sensitivity.
J Biomol NMR. 2007 May;38(1):79-88. doi: 10.1007/s10858-007-9149-7. Epub 2007 Apr 27.
10
NMR: prediction of protein flexibility.
Nat Protoc. 2006;1(2):683-8. doi: 10.1038/nprot.2006.108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验