Suppr超能文献

胸苷激酶1和胸苷磷酸化酶在非小细胞肺癌中的表达与血管生成和增殖的关系

Thymidine kinase 1 and thymidine phosphorylase expression in non-small-cell lung carcinoma in relation to angiogenesis and proliferation.

作者信息

Brockenbrough J Scott, Morihara Janice K, Hawes Stephen E, Stern Joshua E, Rasey Janet S, Wiens Linda W, Feng Qinghua, Vesselle Hubert

机构信息

, Division of Nuclear Medicine, Department of Radiology, University of Washington Medical Center, Seattle, WA 98195-7115, USA.

出版信息

J Histochem Cytochem. 2009 Nov;57(11):1087-97. doi: 10.1369/jhc.2009.952804. Epub 2009 Aug 3.

Abstract

The thymidine salvage pathway enzymes thymidine kinase 1 (TK1) and thymidine phosphorylase (TP) compete for thymidine as a substrate and catalyze opposing synthetic and catabolic reactions that have been implicated in the control of proliferation and angiogenesis, respectively. We investigated the relationship between the expression of TK1 and TP as they relate to proliferation (Ki-67 labeling index) and angiogenesis (Chalkley count of CD31-stained blood vessels) in a series of 110 non-small-cell lung cancer (NSCLC) tumors from patients prospectively enrolled in an imaging trial. TK1 and TP exhibited similar patterns of immunohistochemical distribution, in that each was found in both the nucleus and the cytoplasm of tumor cells. Each enzyme exhibited a significant positive correlation between its levels of nuclear and cytoplasmic expression. A significant positive correlation between TK1 expression and the Ki-67 labeling index (r = 0.53, p<0.001) was observed. TP was significantly positively correlated with Chalkley scoring of CD31 staining in high vs low Chalkley scoring samples (mean TP staining of 115.8 vs 79.9 scoring units, p<0.001), respectively. We did not observe a substantial inverse correlation between the TP and TK1 expression levels in the nuclear compartment (r = -0.17, p=0.08). Tumor size was not found to be associated with TK1, TP, Ki-67, or Chalkley score. These findings provide additional evidence for the role of thymidine metabolism in the complex interaction of proliferation and angiogenesis in NSCLC.

摘要

胸苷补救途径的酶——胸苷激酶1(TK1)和胸苷磷酸化酶(TP),以胸苷作为底物相互竞争,并催化相反的合成和分解代谢反应,分别参与细胞增殖和血管生成的调控。我们在一项影像学试验中前瞻性纳入了110例非小细胞肺癌(NSCLC)患者的肿瘤样本,研究了TK1和TP的表达与增殖(Ki-67标记指数)和血管生成(CD31染色血管的Chalkley计数)之间的关系。TK1和TP呈现出相似的免疫组化分布模式,即在肿瘤细胞的细胞核和细胞质中均有发现。每种酶在细胞核和细胞质中的表达水平之间均呈现出显著的正相关。观察到TK1表达与Ki-67标记指数之间存在显著的正相关(r = 0.53,p<0.001)。在Chalkley评分高的样本与Chalkley评分低的样本中,TP与CD31染色的Chalkley评分分别呈显著正相关(平均TP染色分别为115.8和79.9评分单位,p<0.001)。我们未观察到细胞核内TP和TK1表达水平之间存在显著的负相关(r = -0.17,p = 0.08)。未发现肿瘤大小与TK1、TP、Ki-67或Chalkley评分相关。这些发现为胸苷代谢在NSCLC增殖和血管生成复杂相互作用中的作用提供了更多证据。

相似文献

1
Thymidine kinase 1 and thymidine phosphorylase expression in non-small-cell lung carcinoma in relation to angiogenesis and proliferation.
J Histochem Cytochem. 2009 Nov;57(11):1087-97. doi: 10.1369/jhc.2009.952804. Epub 2009 Aug 3.
2
Thymidine phosphorylase influences [(18)F]fluorothymidine uptake in cancer cells and patients with non-small cell lung cancer.
Eur J Nucl Med Mol Imaging. 2014 Jul;41(7):1327-35. doi: 10.1007/s00259-014-2712-z. Epub 2014 Feb 22.
3
Regulation and novel action of thymidine phosphorylase in non-small cell lung cancer: crosstalk with Nrf2 and HO-1.
PLoS One. 2014 May 12;9(5):e97070. doi: 10.1371/journal.pone.0097070. eCollection 2014.

引用本文的文献

2
Hypertriglyceridemia Induced by Fluorouracil: A Novel Case Report.
Case Rep Oncol. 2021 Mar 1;14(1):207-211. doi: 10.1159/000512820. eCollection 2021 Jan-Apr.
3
Endothelial YAP/TAZ Signaling in Angiogenesis and Tumor Vasculature.
Front Oncol. 2021 Feb 4;10:612802. doi: 10.3389/fonc.2020.612802. eCollection 2020.
5
Thymidine Phosphorylase in Cancer; Enemy or Friend?
Cancer Microenviron. 2016 Apr;9(1):33-43. doi: 10.1007/s12307-015-0173-y. Epub 2015 Aug 23.
9
Thymidine kinase 1 as a diagnostic tumor marker is of moderate value in cancer patients: A meta-analysis.
Biomed Rep. 2013 Jul;1(4):629-637. doi: 10.3892/br.2013.114. Epub 2013 May 28.
10
High thymidine kinase 1 (TK1) expression is a predictor of poor survival in patients with pT1 of lung adenocarcinoma.
Tumour Biol. 2012 Apr;33(2):475-83. doi: 10.1007/s13277-011-0276-0. Epub 2011 Dec 6.

本文引用的文献

1
Different growth patterns of non-small cell lung cancer represent distinct biologic subtypes.
Ann Thorac Surg. 2008 Feb;85(2):395-405. doi: 10.1016/j.athoracsur.2007.08.054.
2
A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion.
Cell. 2007 Nov 30;131(5):966-79. doi: 10.1016/j.cell.2007.10.040.
3
Evaluation of 5'-deoxy-5'-[F-18]fluorothymidine as a tracer of intracellular thymidine phosphorylase activity.
Nucl Med Biol. 2007 Jul;34(5):471-8. doi: 10.1016/j.nucmedbio.2007.03.004. Epub 2007 May 11.
4
Targeting platelet-derived endothelial cell growth factor/thymidine phosphorylase for cancer therapy.
Biochem Pharmacol. 2007 Dec 3;74(11):1555-67. doi: 10.1016/j.bcp.2007.05.008. Epub 2007 May 16.
6
Mitotic control of dTTP pool: a necessity or coincidence?
J Biomed Sci. 2007 Jul;14(4):491-7. doi: 10.1007/s11373-007-9175-1. Epub 2007 May 25.
8
Diversity of the angiogenic phenotype in non-small cell lung cancer.
Am J Respir Cell Mol Biol. 2007 Mar;36(3):343-50. doi: 10.1165/rcmb.2006-0311OC. Epub 2006 Nov 1.
9
Cancer's molecular sweet tooth and the Warburg effect.
Cancer Res. 2006 Sep 15;66(18):8927-30. doi: 10.1158/0008-5472.CAN-06-1501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验