Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
Basic Clin Pharmacol Toxicol. 2009 Nov;105(5):327-32. doi: 10.1111/j.1742-7843.2009.00453.x. Epub 2009 Aug 6.
Fluvastatin has been considered to be metabolised to 5-hydroxy fluvastatin (M-2), 6-hydroxy fluvastatin (M-3) and N-desisopropyl fluvastatin (M-5) in human liver microsomes by primarily CYP2C9. To elucidate the contribution of different CYP enzymes on fluvastatin metabolism, we examined the effect of CYP inhibitors and CYP2C-specific monoclonal antibodies on the formation of fluvastatin metabolites in human liver microsomes. Human liver microsomes were incubated with fluvastatin with or without pre-treatment with CYP inhibitors or monoclonal antibodies. Selective inhibitors of CYP2C9 (sulfaphenazole), CYP3A (ketoconazole) and CYP2C8 (quercetin) were employed and monoclonal antibodies were against CYP2C8, CYP2C9, CYP2C19 and CYP2C8/9/18/19. According to the amount of fluvastatin metabolites produced, the formation of M-3 was found to be major pathway of fluvastatin metabolism (the relative contribution was calculated to be more than 80%). Sulfaphenazole inhibited the formation of M-2 largely, but had little effect on the formation of M-3. It also inhibited the formation of M-5. Ketoconazole markedly inhibited the formation of M-3, but did not inhibit the formation of M-2 and M-5. Quercetin had a moderate inhibitory effect on the formation of all three fluvastatin metabolites. Monoclonal antibodies against CYP2C9 and CYP2C8/9/18/19 markedly inhibited the formation of M-2 and M-5. None of monoclonal antibodies showed clear inhibition on the formation of M-3. In contrast to previous published work, our results suggest that M-2 and M-5 are formed preferentially by CYP2C9, and that M-3 is mainly formed by CYP3A. In summary, the results contribute to a better understanding of the drug-drug interaction potential for fluvastatin in vivo.
氟伐他汀在人肝微粒体中主要通过 CYP2C9 代谢为 5-羟基氟伐他汀(M-2)、6-羟基氟伐他汀(M-3)和 N-去异丙基氟伐他汀(M-5)。为了阐明不同 CYP 酶对氟伐他汀代谢的贡献,我们研究了 CYP 抑制剂和 CYP2C 特异性单克隆抗体对人肝微粒体中氟伐他汀代谢物形成的影响。用人肝微粒体孵育氟伐他汀,并用或不用 CYP 抑制剂或单克隆抗体预处理。使用 CYP2C9 的选择性抑制剂(磺胺嘧啶)、CYP3A(酮康唑)和 CYP2C8(槲皮素),并使用单克隆抗体针对 CYP2C8、CYP2C9、CYP2C19 和 CYP2C8/9/18/19。根据产生的氟伐他汀代谢物的量,发现 M-3 的形成是氟伐他汀代谢的主要途径(相对贡献计算超过 80%)。磺胺嘧啶主要抑制 M-2 的形成,但对 M-3 的形成影响不大。它还抑制 M-5 的形成。酮康唑明显抑制 M-3 的形成,但不抑制 M-2 和 M-5 的形成。槲皮素对所有三种氟伐他汀代谢物的形成均有中度抑制作用。针对 CYP2C9 和 CYP2C8/9/18/19 的单克隆抗体明显抑制 M-2 和 M-5 的形成。没有单克隆抗体对 M-3 的形成表现出明显的抑制作用。与以前发表的工作相比,我们的结果表明 M-2 和 M-5 主要由 CYP2C9 形成,而 M-3 主要由 CYP3A 形成。总之,这些结果有助于更好地理解氟伐他汀在体内的药物相互作用潜力。