Research Division For Life Sciences, Kumamoto Health Science University, 325 Izumi-machi, Kumamoto 861-5598, Japan.
Brain Res Bull. 2010 Jan 15;81(1):53-60. doi: 10.1016/j.brainresbull.2009.07.014.
Glutamate is the major excitatory transmitter in CNS although it causes severe brain damage by pathologic excitotoxicity. Efficient neurotransmission is controlled by powerful protection and support afforded by specific high-affinity glutamate transporters in neurons and glia, clearing synaptic glutamate. While the role of glial cells in glutamate uptake is well defined, the role of neuronal transporters remains poorly understood. The evaluation of impact of neuronal transporters on spontaneous and evoked EPSC in hippocampal CA1 neurons within a model 'single bouton preparation' by pre- and postsynaptic uptake was addressed. In whole-cell patch clamp experiments the influence of blocking, pre- or both pre- and postsynaptic glutamate transporters (GluT) on spontaneous and evoked postsynaptic currents (sEPSC and eEPSC), was examined by manipulating the content of intracellular solution. Suppressing GluT by non-transportable inhibitor TBOA (10 microM) led to remarkable alteration of glutamate uptake process and was reflected in measurable changes of general properties of synaptic currents. Elimination of intracellular K(+) concentration required for glutamate transporter operation by using Cs(+)-based internal solution (postsynaptic GluTs are non-functional apriori), causes the deficient of presynaptic glutamate transporters. Applied in such conditions glutamate transporter inhibitor TBOA (10 microM) affected the occurrence of synaptic event and thus unregulated the transmitter release. eEPSCs were generally suppressed both in amplitude (to 48.73+/-7.03% vs. control) and in success rate (R(suc)) by TBOA (from 91.1+/-7.5% in control to 79.57+/-13.2%). In contrast, with K(+)-based solution in patch pipette (pre- and postsynaptic GluT are intact), amplitude of eEPSC was substantially potentiated by pre-treatment with TBOA (152.1+/-11%), whereas (R(suc)) was reduced to 79.8+/-8.3% in average. The identical reduction of event success rate as well as increased pair-pulse ratios (PPF ratio) for eEPSC in both cases indicates the effect of TBOA on presynaptic uptake. sEPSCs simultaneously recorded from neurons, showed the same pattern of regulation but with less potency, indicating the similar processes in most of excitatory synapses. In conclusion, presynaptic transporters are suggested to act mainly as negative feedback signal on presynaptic release and/or referred to vesicle refilling processes.
谷氨酸是中枢神经系统中的主要兴奋性递质,尽管它通过病理性兴奋毒性引起严重的脑损伤。有效的神经递质传递受神经元和神经胶质中特定高亲和力谷氨酸转运体提供的强大保护和支持控制,这些转运体清除突触谷氨酸。虽然胶质细胞在谷氨酸摄取中的作用已经得到很好的定义,但神经元转运体的作用仍知之甚少。通过在“单个末梢制备”模型中评估神经元转运体对海马 CA1 神经元中自发和诱发 EPSC 的影响,解决了这个问题。在全细胞膜片钳实验中,通过操纵细胞内溶液,研究了阻断、预或预加和后突触谷氨酸转运体 (GluT) 对自发和诱发突触后电流 (sEPSC 和 eEPSC) 的影响。通过使用不可转运的抑制剂 TBOA(10 μM)抑制 GluT,导致谷氨酸摄取过程发生显著改变,并反映在突触电流的一般特性的可测量变化中。使用 Cs(+)- 基内部溶液(后突触 GluT 先前是无功能的)消除谷氨酸转运体操作所需的细胞内 K(+) 浓度,导致前突触谷氨酸转运体缺失。在这种情况下应用谷氨酸转运体抑制剂 TBOA(10 μM)会影响突触事件的发生,从而使递质释放不受调节。eEPSC 的幅度(从对照的 48.73+/-7.03%降至 79.57+/-13.2%)和成功率(R(suc))均受到 TBOA 的普遍抑制(从对照的 91.1+/-7.5%降至 79.57+/-13.2%)。相比之下,在前膜片钳中使用 K(+)- 基溶液(前和后突触 GluT 完好无损),eEPSC 的幅度在前处理时被 TBOA 显著增强(152.1+/-11%),而(R(suc))平均降至 79.8+/-8.3%。在两种情况下,事件成功率的相同降低以及 eEPSC 的双脉冲比(PPF 比)增加都表明 TBOA 对前突触摄取的影响。同时从神经元记录的 sEPSC 显示出相同的调节模式,但强度较小,表明大多数兴奋性突触中存在类似的过程。总之,提示前突触转运体主要作为突触前释放的负反馈信号发挥作用,或者与囊泡再填充过程有关。