Yin Yajun, Lv Cunjing
Department of Engineering Mechanics, School of Aerospace, FML, Tsinghua University, 100084, Beijing, China.
J Biol Phys. 2008 Dec;34(6):591-610. doi: 10.1007/s10867-008-9123-y. Epub 2008 Dec 6.
This paper aims at the general mathematical framework for the equilibrium theory of two-component lipid bilayer vesicles. To take into account the influences of the local compositions together with the mean curvature and Gaussian curvature of the membrane surface, a general potential functional is constructed. We introduce two kinds of virtual displacement modes: the normal one and the tangential one. By minimizing the potential functional, the equilibrium differential equations and the boundary conditions of two-component lipid vesicles are derived. Additionally, the geometrical constraint equation and geometrically permissible condition for the two-component lipid vesicles are presented. The physical, mathematical, and biological meanings of the equilibrium differential equations and the geometrical constraint equations are discussed. The influences of physical parameters on the geometrically permissible phase diagrams are predicted. Numerical results can be used to explain recent experiments.
本文旨在建立双组分脂质双层囊泡平衡理论的通用数学框架。为了考虑局部组成以及膜表面平均曲率和高斯曲率的影响,构建了一个通用的势函数。我们引入了两种虚拟位移模式:法向模式和切向模式。通过使势函数最小化,推导出了双组分脂质囊泡的平衡微分方程和边界条件。此外,还给出了双组分脂质囊泡的几何约束方程和几何许可条件。讨论了平衡微分方程和几何约束方程的物理、数学和生物学意义。预测了物理参数对几何许可相图的影响。数值结果可用于解释最近的实验。