Suppr超能文献

双组分脂质双层囊泡的平衡理论与几何约束方程。

Equilibrium theory and geometrical constraint equation for two-component lipid bilayer vesicles.

作者信息

Yin Yajun, Lv Cunjing

机构信息

Department of Engineering Mechanics, School of Aerospace, FML, Tsinghua University, 100084, Beijing, China.

出版信息

J Biol Phys. 2008 Dec;34(6):591-610. doi: 10.1007/s10867-008-9123-y. Epub 2008 Dec 6.

Abstract

This paper aims at the general mathematical framework for the equilibrium theory of two-component lipid bilayer vesicles. To take into account the influences of the local compositions together with the mean curvature and Gaussian curvature of the membrane surface, a general potential functional is constructed. We introduce two kinds of virtual displacement modes: the normal one and the tangential one. By minimizing the potential functional, the equilibrium differential equations and the boundary conditions of two-component lipid vesicles are derived. Additionally, the geometrical constraint equation and geometrically permissible condition for the two-component lipid vesicles are presented. The physical, mathematical, and biological meanings of the equilibrium differential equations and the geometrical constraint equations are discussed. The influences of physical parameters on the geometrically permissible phase diagrams are predicted. Numerical results can be used to explain recent experiments.

摘要

本文旨在建立双组分脂质双层囊泡平衡理论的通用数学框架。为了考虑局部组成以及膜表面平均曲率和高斯曲率的影响,构建了一个通用的势函数。我们引入了两种虚拟位移模式:法向模式和切向模式。通过使势函数最小化,推导出了双组分脂质囊泡的平衡微分方程和边界条件。此外,还给出了双组分脂质囊泡的几何约束方程和几何许可条件。讨论了平衡微分方程和几何约束方程的物理、数学和生物学意义。预测了物理参数对几何许可相图的影响。数值结果可用于解释最近的实验。

相似文献

1
Equilibrium theory and geometrical constraint equation for two-component lipid bilayer vesicles.
J Biol Phys. 2008 Dec;34(6):591-610. doi: 10.1007/s10867-008-9123-y. Epub 2008 Dec 6.
3
General mathematical frame for open or closed biomembranes (Part I): equilibrium theory and geometrically constraint equation.
J Math Biol. 2005 Oct;51(4):403-13. doi: 10.1007/s00285-005-0330-x. Epub 2005 Jun 6.
4
Geometric theory for adhering lipid vesicles.
Colloids Surf B Biointerfaces. 2009 Nov 1;74(1):380-8. doi: 10.1016/j.colsurfb.2009.06.030. Epub 2009 Jul 7.
5
Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature.
Biophys J. 2000 Nov;79(5):2583-604. doi: 10.1016/S0006-3495(00)76498-8.
6
Geodesic curvature driven surface microdomain formation.
J Comput Phys. 2017 Sep 15;345:260-274. doi: 10.1016/j.jcp.2017.05.029. Epub 2017 May 18.
7
Theoretical analysis of adhering lipid vesicles with free edges.
Colloids Surf B Biointerfaces. 2005 Dec 20;46(3):162-8. doi: 10.1016/j.colsurfb.2005.11.001. Epub 2005 Dec 1.
8
Numerical computations of the dynamics of fluidic membranes and vesicles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052704. doi: 10.1103/PhysRevE.92.052704. Epub 2015 Nov 3.
9
Stability of biphasic vesicles with membrane embedded proteins.
J Biomech. 2007;40(7):1512-7. doi: 10.1016/j.jbiomech.2006.06.015. Epub 2006 Aug 17.
10
Non-equilibrium shapes and dynamics of active vesicles.
Soft Matter. 2022 Sep 21;18(36):6868-6881. doi: 10.1039/d2sm00622g.

引用本文的文献

1
Conformations of a charged vesicle interacting with an oppositely charged particle.
J Biol Phys. 2018 Mar;44(1):1-16. doi: 10.1007/s10867-017-9471-6. Epub 2017 Oct 10.

本文引用的文献

1
Elasticity of polymer vesicles by osmotic pressure: an intermediate theory between fluid membranes and solid shells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 1):021806. doi: 10.1103/PhysRevE.72.021806. Epub 2005 Aug 17.
2
Nonequilibrium patterns and shape fluctuations in reactive membranes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 1):051906. doi: 10.1103/PhysRevE.71.051906. Epub 2005 May 18.
3
General mathematical frame for open or closed biomembranes (Part I): equilibrium theory and geometrically constraint equation.
J Math Biol. 2005 Oct;51(4):403-13. doi: 10.1007/s00285-005-0330-x. Epub 2005 Jun 6.
4
Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes.
J Biomech. 2005 Jul;38(7):1433-40. doi: 10.1016/j.jbiomech.2004.06.024. Epub 2004 Oct 5.
5
The kinetics of phase separation in asymmetric membranes.
Biophys J. 2005 Jun;88(6):4072-83. doi: 10.1529/biophysj.104.054288. Epub 2005 Mar 18.
6
Internal states of active inclusions and the dynamics of an active membrane.
Phys Rev Lett. 2004 Apr 23;92(16):168101. doi: 10.1103/PhysRevLett.92.168101. Epub 2004 Apr 19.
7
Lipid membranes with free edges.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 1):061915. doi: 10.1103/PhysRevE.68.061915. Epub 2003 Dec 31.
8
Organization in lipid membranes containing cholesterol.
Phys Rev Lett. 2002 Dec 23;89(26):268101. doi: 10.1103/PhysRevLett.89.268101. Epub 2002 Dec 9.
9
Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer- couple hypothesis from membrane mechanics.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16766-9. doi: 10.1073/pnas.202617299. Epub 2002 Dec 6.
10
Geometry of lipid vesicle adhesion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 1):041604. doi: 10.1103/PhysRevE.66.041604. Epub 2002 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验