Suppr超能文献

澳大利亚雀形目鸟类的体型纬度渐变与全球变暖相关。

Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines.

作者信息

Gardner Janet L, Heinsohn Robert, Joseph Leo

机构信息

Department of Botany & Zoology, Research School of Biology, Australian National University, Canberra, Australia.

出版信息

Proc Biol Sci. 2009 Nov 7;276(1674):3845-52. doi: 10.1098/rspb.2009.1011. Epub 2009 Aug 12.

Abstract

Intraspecific latitudinal clines in the body size of terrestrial vertebrates, where members of the same species are larger at higher latitudes, are widely interpreted as evidence for natural selection and adaptation to local climate. These clines are predicted to shift in response to climate change. We used museum specimens to measure changes in the body size of eight passerine bird species from south-eastern Australia over approximately the last 100 years. Four species showed significant decreases in body size (1.8-3.6% of wing length) and a shift in latitudinal cline over that period, and a meta-analysis demonstrated a consistent trend across all eight species. Southern high-latitude populations now display the body sizes typical of more northern populations pre-1950, equivalent to a 7 degrees shift in latitude. Using ptilochronology, we found no evidence that these morphological changes were a plastic response to changes in nutrition, a likely non-genetic mechanism for the pattern observed. Our results demonstrate a generalized response by eight avian species to some major environmental change over the last 100 years or so, probably global warming.

摘要

陆生脊椎动物的种内纬度渐变群现象,即同一物种的成员在高纬度地区体型更大,这一现象被广泛解释为自然选择和对当地气候适应的证据。预计这些渐变群会随着气候变化而发生变化。我们利用博物馆标本测量了澳大利亚东南部大约过去100年中8种雀形目鸟类的体型变化。其中4种鸟类的体型显著减小(翅长的1.8 - 3.6%),且在此期间纬度渐变群发生了变化,一项荟萃分析表明所有8种鸟类都呈现出一致的趋势。现在,南部高纬度地区的种群呈现出1950年前更靠北种群的典型体型,相当于纬度移动了7度。通过羽毛年代学,我们没有发现证据表明这些形态变化是对营养变化的可塑性反应,而营养变化是观察到的这种模式可能的非遗传机制。我们的结果表明,在过去约100年里,8种鸟类对某种重大环境变化产生了普遍反应,可能是全球变暖。

相似文献

1
Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines.
Proc Biol Sci. 2009 Nov 7;276(1674):3845-52. doi: 10.1098/rspb.2009.1011. Epub 2009 Aug 12.
2
Cellular basis of wing size variation in Drosophila melanogaster: a comparison of latitudinal clines on two continents.
Heredity (Edinb). 2000 Mar;84 ( Pt 3):338-47. doi: 10.1046/j.1365-2540.2000.00677.x.
5
Oh, the places you will grow: Intraspecific latitudinal clines in butterfly size suggest a phylogenetic signal.
Ecol Evol. 2022 May 19;12(5):e8913. doi: 10.1002/ece3.8913. eCollection 2022 May.
7
A time series of evolution in action: a latitudinal cline in wing size in South American Drosophila subobscura.
Evolution. 2004 Apr;58(4):768-80. doi: 10.1111/j.0014-3820.2004.tb00410.x.
8
Morphological change to birds over 120 years is not explained by thermal adaptation to climate change.
PLoS One. 2014 Jul 14;9(7):e101927. doi: 10.1371/journal.pone.0101927. eCollection 2014.

引用本文的文献

1
Smaller plants in warmer water could have implications for future Kelp forests.
Sci Rep. 2025 Aug 5;15(1):28616. doi: 10.1038/s41598-025-13950-z.
3
Insect size responses to climate change vary across elevations according to seasonal timing.
PLoS Biol. 2025 Jan 30;23(1):e3002805. doi: 10.1371/journal.pbio.3002805. eCollection 2025 Jan.
4
Genetic and morphological shifts associated with climate change in a migratory bird.
BMC Biol. 2025 Jan 7;23(1):3. doi: 10.1186/s12915-024-02107-5.
6
Variability in bat morphology is influenced by temperature and forest cover and their interactions.
Ecol Evol. 2023 Jan 29;13(1):e9695. doi: 10.1002/ece3.9695. eCollection 2023 Jan.
7
Increases in intraspecific body size variation are common among North American mammals and birds between 1880 and 2020.
Nat Ecol Evol. 2023 Mar;7(3):347-354. doi: 10.1038/s41559-022-01967-w. Epub 2023 Jan 23.
10
Niche-trait relationships at individual and population level in three co-occurring passerine species.
Ecol Evol. 2021 May 2;11(12):7378-7389. doi: 10.1002/ece3.7569. eCollection 2021 Jun.

本文引用的文献

1
PREDICTING MICROEVOLUTIONARY RESPONSES TO DIRECTIONAL SELECTION ON HERITABLE VARIATION.
Evolution. 1995 Apr;49(2):241-251. doi: 10.1111/j.1558-5646.1995.tb02236.x.
2
MORPHOMETRIC DIFFERENTIATION IN NEW ZEALAND POPULATIONS OF THE HOUSE SPARROW (PASSER DOMESTICUS).
Evolution. 1980 Jul;34(4):638-653. doi: 10.1111/j.1558-5646.1980.tb04003.x.
3
EVOLUTION IN THE HOUSE SPARROW. II. ADAPTIVE DIFFERENTIATION IN NORTH AMERICAN POPULATIONS.
Evolution. 1971 Mar;25(1):1-28. doi: 10.1111/j.1558-5646.1971.tb01855.x.
4
Costs and limits of phenotypic plasticity.
Trends Ecol Evol. 1998 Feb 1;13(2):77-81. doi: 10.1016/s0169-5347(97)01274-3.
5
Global biogeography and ecology of body size in birds.
Ecol Lett. 2009 Mar;12(3):249-59. doi: 10.1111/j.1461-0248.2009.01281.x.
7
Bergmann's rule and climate change revisited: disentangling environmental and genetic responses in a wild bird population.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13492-6. doi: 10.1073/pnas.0800999105. Epub 2008 Aug 29.
8
Nonlinear impact of climate on survival in a migratory white stork population.
J Anim Ecol. 2008 Nov;77(6):1143-52. doi: 10.1111/j.1365-2656.2008.01435.x. Epub 2008 Jun 25.
9
Climate change and evolution: disentangling environmental and genetic responses.
Mol Ecol. 2008 Jan;17(1):167-78. doi: 10.1111/j.1365-294X.2007.03413.x.
10
Evolution of character displacement in Darwin's finches.
Science. 2006 Jul 14;313(5784):224-6. doi: 10.1126/science.1128374.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验