Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 78245, United States.
DNA Repair (Amst). 2009 Oct 2;8(10):1235-41. doi: 10.1016/j.dnarep.2009.07.007. Epub 2009 Aug 21.
Cell cycle plays a crucial role in regulating the pathway used to repair DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, homologous recombination is primarily limited to non-G(1) cells as the formation of recombinogenic single-stranded DNA requires CDK1-dependent 5' to 3' resection of DNA ends. However, the effect of cell cycle on non-homologous end joining (NHEJ) is not yet clearly defined. Using an assay to quantitatively measure the contributions of each repair pathway to repair product formation and cellular survival after DSB induction, we found that NHEJ is most efficient at G(1), and markedly repressed at G(2). Repression of NHEJ at G(2) is achieved by efficient end resection and by the reduced association of core NHEJ proteins with DNA breaks, both of which depend on the CDK1 activity. Importantly, repression of 5' end resection by CDK1 inhibition at G(2) alone did not fully restore either physical association of Ku/Dnl4-Lif1 with DSBs or NHEJ proficiency to the level at G(1). Expression of excess Ku can partially offset the inhibition of end joining at G(2). The results suggest that regulation of Ku/Dnl4-Lif1 affinity for DNA ends may contribute to the cell cycle-dependent modulation of NHEJ efficiency.
细胞周期在调控用于修复 DNA 双链断裂 (DSB) 的途径中起着至关重要的作用。在酿酒酵母中,同源重组主要局限于非 G1 细胞,因为形成重组性单链 DNA 需要 CDK1 依赖性的 DNA 末端 5' 到 3' 切除。然而,细胞周期对非同源末端连接 (NHEJ) 的影响尚未明确界定。我们使用一种定量测量每种修复途径对 DSB 诱导后修复产物形成和细胞存活的贡献的测定方法,发现 NHEJ 在 G1 时效率最高,而在 G2 时明显受到抑制。G2 时 NHEJ 的抑制是通过有效的末端切除和核心 NHEJ 蛋白与 DNA 断裂的减少结合来实现的,这两者都依赖于 CDK1 活性。重要的是,仅通过 CDK1 抑制在 G2 时抑制 5' 端切除并不能完全恢复 Ku/Dnl4-Lif1 与 DSB 的物理结合,也不能使 NHEJ 效率恢复到 G1 时的水平。过量 Ku 的表达可以部分抵消末端连接在 G2 时的抑制。结果表明,Ku/Dnl4-Lif1 对 DNA 末端亲和力的调节可能有助于 NHEJ 效率的细胞周期依赖性调节。