Suppr超能文献

中性、阴离子型及内掺杂In(x)P(x)团簇的结构与电子性质的密度泛函研究

A density-functional study of the structures and electronic properties of neutral, anionic, and endohedrally doped In(x)P(x) clusters.

作者信息

Longo R C, Carrete J, Aguilera-Granja F, Vega A, Gallego L J

机构信息

Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.

出版信息

J Chem Phys. 2009 Aug 21;131(7):074504. doi: 10.1063/1.3206844.

Abstract

We report extensive ab initio calculations of the structures, binding energies, and magnetic moments of In(x)P(x) and In(x)P(x) (-) clusters (x=1-15) using a density-functional method that employs linear combinations of pseudoatomic orbitals as basis sets, nonlocal norm-conserving pseudopotentials, and the generalized gradient approximation for exchange and correlation. Our results, which are compared with those obtained previously for some of these clusters by means of all-electron calculations, show that hollow cages with alternating In-P bonds are energetically preferred over other structures for both the neutral and anionic species within the range x=6-15. We also consider the endohedrally doped X@In(10)P(10) (X=Cr,Mn,Fe,Co) and Ti@In(x)P(x) (x=7-12) clusters. Our results show that, except for Ti@In(7)P(7) and Ti@In(8)P(8), the transition metal atoms preserve their atomic spin magnetic moments when encapsulated in the InP cages, instead of suffering either a spin crossover or a spin quenching due to hybridization effects. We also show that the stabilities of some empty and doped InP cages can be explained on the basis of the jellium model.

摘要

我们报告了使用一种密度泛函方法对In(x)P(x)和In(x)P(x) (-)团簇(x = 1 - 15)的结构、结合能和磁矩进行的广泛的从头算计算。该方法采用伪原子轨道的线性组合作为基组、非局域守恒赝势以及用于交换和关联的广义梯度近似。我们的结果与之前通过全电子计算得到的部分团簇结果进行了比较,结果表明,对于x = 6 - 15范围内的中性和阴离子物种,具有交替In - P键的中空笼状结构在能量上比其他结构更具优势。我们还考虑了内掺杂的X@In(10)P(10)(X = Cr、Mn、Fe、Co)和Ti@In(x)P(x)(x = 7 - 12)团簇。我们的结果表明,除了Ti@In(7)P(7)和Ti@In(8)P(8)之外,过渡金属原子在被封装在InP笼中时保留其原子自旋磁矩,而不是由于杂化效应而发生自旋交叉或自旋猝灭。我们还表明,一些空的和掺杂的InP笼的稳定性可以基于凝胶模型来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验