Suppr超能文献

实用后校准不确定度分析:内华达州尤卡山。

Practical postcalibration uncertainty analysis: Yucca Mountain, Nevada.

机构信息

Thermal/Fluid Science & Engineering, PO Box 969, Livermore, CA 94551-0969, USA.

出版信息

Ground Water. 2009 Nov-Dec;47(6):851-69. doi: 10.1111/j.1745-6584.2009.00626.x. Epub 2009 Sep 10.

Abstract

The values of parameters in a groundwater flow model govern the precision of predictions of future system behavior. Predictive precision, thus, typically depends on an ability to infer values of system properties from historical measurements through calibration. When such data are scarce, or when their information content with respect to parameters that are most relevant to predictions of interest is weak, predictive uncertainty may be high, even if the model is "calibrated." Recent advances help recognize this condition, quantitatively evaluate predictive uncertainty, and suggest a path toward improved predictive accuracy by identifying sources of predictive uncertainty and by determining what observations will most effectively reduce this uncertainty. We demonstrate linear and nonlinear predictive error/uncertainty analyses as applied to a groundwater flow model of Yucca Mountain, Nevada, the United States' proposed site for disposal of high-level radioactive waste. Linear and nonlinear uncertainty analyses are readily implemented as an adjunct to model calibration with medium to high parameterization density. Linear analysis yields contributions made by each parameter to a prediction's uncertainty and the worth of different observations, both existing and yet-to-be-gathered, toward reducing this uncertainty. Nonlinear analysis provides more accurate characterization of the uncertainty of model predictions while yielding their (approximate) probability distribution functions. This article applies the above methods to a prediction of specific discharge and confirms the uncertainty bounds on specific discharge supplied in the Yucca Mountain Project License Application.

摘要

地下水流动模型中参数的值决定了对未来系统行为预测的精度。因此,预测精度通常取决于通过校准从历史测量中推断系统属性值的能力。当数据稀缺时,或者当这些数据对预测最感兴趣的参数的信息量较弱时,即使模型经过“校准”,预测的不确定性也可能很高。最近的进展有助于认识到这种情况,通过定量评估预测不确定性,并通过确定哪些观测将最有效地减少这种不确定性,提出提高预测准确性的途径。我们展示了应用于美国内华达州尤卡山地下水流动模型的线性和非线性预测误差/不确定性分析,尤卡山是美国拟议的高放废物处置场。线性和非线性不确定性分析可以很容易地作为模型校准的辅助手段,适用于中等至高密度的参数化。线性分析可以得出每个参数对预测不确定性的贡献,以及现有和未来要收集的不同观测对减少这种不确定性的价值。非线性分析可以更准确地描述模型预测的不确定性,同时给出它们的(近似)概率分布函数。本文将上述方法应用于特定排放量的预测,并确认了尤卡山项目许可申请中提供的特定排放量的不确定性边界。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验