Division of Clinical Neurology, University Hospital, University of Nottingham, UK.
Comput Med Imaging Graph. 2010 Sep;34(6):504-13. doi: 10.1016/j.compmedimag.2009.08.006. Epub 2009 Sep 17.
A new fuzzy algorithm for assessing white matter connectivity in the brain using diffusion-weighted magnetic resonance images is presented. The proposed method considers anatomical paths as chains of linked neighbouring voxels. Links between neighbours are assigned weights using the respective fibre orientation estimates. By checking all possible paths between any two voxels, a connectedness value is assigned, representative of the weakest link of the strongest path connecting the voxel pair. Multiple orientations within a voxel can be incorporated, thus allowing the utilization of fibre crossing information, while fibre branching is inherently considered. Under the assumption that paths connected strongly to a seed will exhibit adequate orientational coherence, fuzzy connectedness values offer a relative measure of path feasibility. The algorithm is validated using simulations and results are shown on diffusion tensor and Q-ball images.
提出了一种新的模糊算法,用于使用扩散加权磁共振图像评估大脑中的白质连通性。该方法将解剖路径视为链接相邻体素的链。使用各自的纤维方向估计值为邻居之间的链接分配权重。通过检查任意两个体素之间的所有可能路径,分配一个连通值,表示连接体素对的最强路径的最弱链接。可以合并体素内的多个方向,从而允许利用纤维交叉信息,同时固有地考虑纤维分支。在假设与种子强连接的路径将表现出足够的方向相干性的前提下,模糊连通值提供了路径可行性的相对度量。该算法使用模拟进行了验证,并在扩散张量和 Q 球图像上展示了结果。