Feng Jinchao, Jia Kebin, Qin Chenghu, Yan Guorui, Zhu Shouping, Zhang Xing, Liu Junting, Tian Jie
The College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing 100190, China.
Opt Express. 2009 Sep 14;17(19):16834-48. doi: 10.1364/OE.17.016834.
Bioluminescence tomography (BLT) poses a typical ill-posed inverse problem with a large number of unknowns and a relatively limited number of boundary measurements. It is indispensable to incorporate a priori information into the inverse problem formulation in order to obtain viable solutions. In the paper, Bayesian approach has been firstly suggested to incorporate multiple types of a priori information for BLT reconstruction. Meanwhile, a generalized adaptive Gaussian Markov random field (GAGMRF) prior model for unknown source density estimation is developed to further reduce the ill-posedness of BLT on the basis of finite element analysis. Then the distribution of bioluminescent source can be acquired by maximizing the log posterior probability with respect to a noise parameter and the unknown source density. Furthermore, the use of finite element method makes the algorithm appropriate for complex heterogeneous phantom. The algorithm was validated by numerical simulation of a 3-D micro-CT mouse atlas and physical phantom experiment. The reconstructed results suggest that we are able to achieve high computational efficiency and accurate localization of bioluminescent source.
生物发光断层成像(BLT)是一个典型的不适定逆问题,存在大量未知数和相对有限的边界测量值。为了获得可行的解决方案,将先验信息纳入逆问题公式中是必不可少的。在本文中,首次提出了贝叶斯方法,将多种类型的先验信息纳入BLT重建。同时,基于有限元分析,开发了一种用于未知源密度估计的广义自适应高斯马尔可夫随机场(GAGMRF)先验模型,以进一步降低BLT的不适定性。然后,通过相对于噪声参数和未知源密度最大化对数后验概率,可以获得生物发光源的分布。此外,有限元方法的使用使该算法适用于复杂的非均匀体模。该算法通过对三维微型计算机断层扫描(micro-CT)小鼠图谱的数值模拟和物理体模实验进行了验证。重建结果表明,我们能够实现高计算效率和生物发光源的精确定位。