Suppr超能文献

小基因调控网络中的多稳态能力。

The capacity for multistability in small gene regulatory networks.

作者信息

Siegal-Gaskins Dan, Grotewold Erich, Smith Gregory D

机构信息

Mathematical Bioscience Institute, The Ohio State University, Columbus, OH 43210, USA.

出版信息

BMC Syst Biol. 2009 Sep 21;3:96. doi: 10.1186/1752-0509-3-96.

Abstract

BACKGROUND

Recent years have seen a dramatic increase in the use of mathematical modeling to gain insight into gene regulatory network behavior across many different organisms. In particular, there has been considerable interest in using mathematical tools to understand how multistable regulatory networks may contribute to developmental processes such as cell fate determination. Indeed, such a network may subserve the formation of unicellular leaf hairs (trichomes) in the model plant Arabidopsis thaliana.

RESULTS

In order to investigate the capacity of small gene regulatory networks to generate multiple equilibria, we present a chemical reaction network (CRN)-based modeling formalism and describe a number of methods for CRN analysis in a parameter-free context. These methods are compared and applied to a full set of one-component subnetworks, as well as a large random sample from 40,680 similarly constructed two-component subnetworks. We find that positive feedback and cooperativity mediated by transcription factor (TF) dimerization is a requirement for one-component subnetwork bistability. For subnetworks with two components, the presence of these processes increases the probability that a randomly sampled subnetwork will exhibit multiple equilibria, although we find several examples of bistable two-component subnetworks that do not involve cooperative TF-promoter binding. In the specific case of epidermal differentiation in Arabidopsis, dimerization of the GL3-GL1 complex and cooperative sequential binding of GL3-GL1 to the CPC promoter are each independently sufficient for bistability.

CONCLUSION

Computational methods utilizing CRN-specific theorems to rule out bistability in small gene regulatory networks are far superior to techniques generally applicable to deterministic ODE systems. Using these methods to conduct an unbiased survey of parameter-free deterministic models of small networks, and the Arabidopsis epidermal cell differentiation subnetwork in particular, we illustrate how future experimental research may be guided by network structure analysis.

摘要

背景

近年来,数学建模在深入了解许多不同生物体的基因调控网络行为方面的应用急剧增加。特别是,人们对使用数学工具来理解多稳态调控网络如何促进诸如细胞命运决定等发育过程产生了浓厚兴趣。实际上,这样的网络可能有助于模式植物拟南芥中单细胞叶毛(毛状体)的形成。

结果

为了研究小型基因调控网络产生多个平衡点的能力,我们提出了一种基于化学反应网络(CRN)的建模形式,并描述了在无参数情况下进行CRN分析的多种方法。对这些方法进行了比较,并应用于一整套单组分子网,以及从40,680个类似构建的双组分子网中抽取的大量随机样本。我们发现,由转录因子(TF)二聚化介导的正反馈和协同作用是单组分子网双稳态的必要条件。对于具有两个组分的子网,这些过程的存在增加了随机抽样子网表现出多个平衡点的概率,尽管我们发现了一些双稳态双组分子网的例子,它们不涉及TF与启动子的协同结合。在拟南芥表皮分化的具体情况下,GL3 - GL1复合物的二聚化以及GL3 - GL1与CPC启动子的协同顺序结合各自独立地足以实现双稳态。

结论

利用CRN特定定理来排除小型基因调控网络中的双稳态的计算方法远优于一般适用于确定性常微分方程系统的技术。使用这些方法对小型网络的无参数确定性模型进行无偏调查,特别是对拟南芥表皮细胞分化子网进行调查,我们说明了未来的实验研究如何可以由网络结构分析来指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf4/2759935/13d20d3d1248/1752-0509-3-96-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验