Suppr超能文献

臭氧暴露后植物细胞氧化还原能力的代谢依赖性变化。

Metabolic-dependent changes in plant cell redox power after ozone exposure.

机构信息

Nancy-Université, UMR 1137 Ecologie et Ecophysiologie Forestières, Vandoeuvre-lès- Nancy, France.

出版信息

Plant Biol (Stuttg). 2009 Nov;11 Suppl 1:35-42. doi: 10.1111/j.1438-8677.2009.00261.x.

Abstract

The tropospheric level of the phytotoxic air pollutant ozone has increased considerably during the last century, and is expected to continue to rise. Long-term exposure of higher plants to low ozone concentrations affects biochemical processes prior to any visible symptoms of injury. The current critical level of ozone used to determine the threshold for damaging plants (biomass loss) is still based on the seasonal sum of the external concentration above 40 nl.l(-1) (AOT40). Taking into account stomatal conductance and the internal capacity of leaf defences, a more relevant concept should be based upon the 'effective ozone flux', the balance between the stomatal flux and the intensity of cellular detoxification. The large decrease in the Rubisco/PEPc ratio reflects photosynthetic damage from ozone, and a large increase in activity of cytosolic PEPc, which allows increased malate production. Although the direct detoxification of ozone (and ROS produced from its decomposition) is carried out primarily by cell wall ascorbate, the existing level of this antioxidant is not sufficient to indicate the degree of cell sensitivity. In order to regenerate ascorbate, NAD(P)H is needed as the primary supplier of reducing power. It is hypothesised that increased activity of the catabolic pathways and associated shunts (glucose-6-phosphate dehydrogenase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme) can provide sufficient NAD(P)H to maintain intracellular detoxification. Thus, measurement of the level of redox power would contribute to determination of the 'effective ozone dose', serving ultimately to improve the ozone risk index for higher plants.

摘要

在过去的一个世纪中,大气平流层中的植物毒性空气污染物臭氧水平显著增加,预计还将继续上升。长期暴露于低浓度臭氧中会影响生化过程,而在出现任何可见损伤症状之前。目前用于确定伤害植物(生物量损失)阈值的臭氧临界水平仍然基于外部浓度高于 40 nl.l(-1) (AOT40) 的季节总和。考虑到气孔导度和叶片防御的内部能力,一个更相关的概念应该基于“有效臭氧通量”,即气孔通量和细胞解毒强度之间的平衡。Rubisco/PEPc 比值的大幅下降反映了臭氧对光合作用的破坏,而细胞质 PEPc 活性的大幅增加允许更多的苹果酸产生。尽管臭氧(及其分解产生的 ROS)的直接解毒主要是通过细胞壁抗坏血酸进行的,但这种抗氧化剂的现有水平不足以表明细胞的敏感性程度。为了再生抗坏血酸,需要 NAD(P)H 作为主要的还原能力供应者。据推测,分解代谢途径和相关支路(葡萄糖-6-磷酸脱氢酶、NADP 依赖性甘油醛-3-磷酸脱氢酶、异柠檬酸脱氢酶和苹果酸酶)的活性增加可以提供足够的 NAD(P)H 来维持细胞内解毒。因此,氧化还原能力水平的测量将有助于确定“有效臭氧剂量”,最终有助于提高高等植物的臭氧风险指数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验