Aldinger Kimberly A, Elsen Gina E, Prince Victoria E, Millen Kathleen J
Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
Semin Pediatr Neurol. 2009 Sep;16(3):155-63. doi: 10.1016/j.spen.2009.06.003.
Congenital malformations of the human hindbrain, including the cerebellum, are poorly understood largely because their recognition is a relatively recent advance for imaging diagnostics. Cerebellar malformations are the most obvious and best characterized hindbrain malformations due to their relative ease of viewing by magnetic resonance imaging and the recent identification of several causative genes (Millen et al. Curr Opin Neurobiol 18:12-19, 2008). Malformations of the pons and medulla have also been described both in isolation and in association with cerebellar malformations (Barkovich et al. Ann Neurol 62:625-639, 2007). Although little is understood regarding the specific developmental pathologies underlying hindbrain malformations in humans, much is known regarding the mechanisms and genes driving hindbrain development in vertebrate model organisms. Thus, studies in vertebrate models provide a developmental framework in which to categorize human hindbrain malformations and serve to provide information regarding disrupted developmental processes and candidate genes. Here, we survey the basic principles of vertebrate hindbrain development and integrate our current knowledge of human hindbrain malformations into this framework.
人类后脑(包括小脑)的先天性畸形在很大程度上仍未被充分了解,主要是因为对其识别在成像诊断方面是一项相对较新的进展。小脑畸形是最明显且特征最明确的后脑畸形,这是由于通过磁共振成像相对容易观察到它们,并且最近鉴定出了几个致病基因(米伦等人,《当代神经生物学观点》18:12 - 19,2008年)。脑桥和延髓的畸形也已被分别描述,以及与小脑畸形相关联的情况(巴尔科维奇等人,《神经病学纪事》62:625 - 639,2007年)。尽管对于人类后脑畸形背后的具体发育病理学了解甚少,但对于脊椎动物模型生物中驱动后脑发育的机制和基因却了解很多。因此,在脊椎动物模型中的研究提供了一个发育框架,用于对人类后脑畸形进行分类,并有助于提供有关发育过程中断和候选基因的信息。在这里,我们概述脊椎动物后脑发育的基本原理,并将我们目前对人类后脑畸形的认识整合到这个框架中。