Loncarević I, Budinski-Petković Lj, Vrhovac S B, Belić A
Faculty of Engineering, Trg D. Obradovića 6, Novi Sad 21000, Serbia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021115. doi: 10.1103/PhysRevE.80.021115. Epub 2009 Aug 20.
Kinetics of the deposition process of k -mers in the presence of desorption or/and diffusional relaxation of particles is studied by Monte Carlo method on a one-dimensional lattice. For reversible deposition of k-mers, we find that after the initial "jamming," a stretched exponential growth of the coverage theta(t) toward the steady-state value theta(eq) occurs, i.e., theta(eq)-theta(t) is proportional to exp[-(t/tau)(beta)]. The characteristic time scale tau is found to decrease with desorption probability P(des) according to a power law, tau is proportional to P(des)(-gamma), with the same exponent gamma=1.22+/-0.04 for all k-mers. For irreversible deposition with diffusional relaxation, the growth of the coverage theta(t) above the jamming limit to the closest packing limit (CPL) theta(CPL) is described by the pattern theta(CPL)-theta(t) is proportional to E(beta)[-(t/tau)(beta)], where E(beta) denotes the Mittag-Leffler function of order beta(0,1) . Similarly to the reversible case, we found that the dependence of the relaxation time tau on the diffusion probability P(dif) is consistent again with a simple power-law, i.e., tau is proportional to P(dif)(-delta). When adsorption, desorption, and diffusion occur simultaneously, coverage always reaches an equilibrium value theta(eq), which depends only on the desorption/adsorption probability ratio. The presence of diffusion only hastens the approach to the equilibrium state, so that the stretched exponential function gives a very accurate description of the deposition kinetics of these processes in the whole range above the jamming limit.
在一维晶格上,通过蒙特卡罗方法研究了在粒子存在解吸或/和扩散弛豫情况下(k)聚体沉积过程的动力学。对于(k)聚体的可逆沉积,我们发现,在初始的“堵塞”之后,覆盖度(\theta(t))朝着稳态值(\theta(eq))呈拉伸指数增长,即(\theta(eq)-\theta(t))与(\exp[-(t/\tau)^{\beta}])成正比。发现特征时间尺度(\tau)根据幂律随解吸概率(P(des))减小,(\tau)与(P(des)^{-\gamma})成正比,对于所有(k)聚体,指数(\gamma = 1.22 \pm 0.04)相同。对于具有扩散弛豫的不可逆沉积,覆盖度(\theta(t))从堵塞极限以上增长到最密堆积极限(CPL)(\theta(CPL)),其模式为(\theta(CPL)-\theta(t))与(E_{\beta}[-(t/\tau)^{\beta}])成正比,其中(E_{\beta})表示阶数为(\beta(0,1))的米塔格 - 莱夫勒函数。与可逆情况类似,我们发现弛豫时间(\tau)对扩散概率(P(dif))的依赖性再次符合简单的幂律,即(\tau)与(P(dif)^{-\delta})成正比。当吸附、解吸和扩散同时发生时,覆盖度总是达到平衡值(\theta(eq)),该平衡值仅取决于解吸/吸附概率比。扩散的存在仅加速了向平衡态的趋近,因此拉伸指数函数在堵塞极限以上的整个范围内对这些过程的沉积动力学给出了非常准确的描述。