Huang Michael Li-Hsuan, Becker Erika M, Whitnall Megan, Suryo Rahmanto Yohan, Ponka Prem, Richardson Des R
Iron Metabolism and Chelation Program, Discipline of Pathology and Bosch Institute, Blackburn Building, D06, University of Sydney, NSW 2006 Australia.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16381-6. doi: 10.1073/pnas.0906784106. Epub 2009 Sep 4.
We used the muscle creatine kinase (MCK) conditional frataxin knockout mouse to elucidate how frataxin deficiency alters iron metabolism. This is of significance because frataxin deficiency leads to Friedreich's ataxia, a disease marked by neurologic and cardiologic degeneration. Using cardiac tissues, we demonstrate that frataxin deficiency leads to down-regulation of key molecules involved in 3 mitochondrial utilization pathways: iron-sulfur cluster (ISC) synthesis (iron-sulfur cluster scaffold protein1/2 and the cysteine desulferase Nfs1), mitochondrial iron storage (mitochondrial ferritin), and heme synthesis (5-aminolevulinate dehydratase, coproporphyrinogen oxidase, hydroxymethylbilane synthase, uroporphyrinogen III synthase, and ferrochelatase). This marked decrease in mitochondrial iron utilization and resultant reduced release of heme and ISC from the mitochondrion could contribute to the excessive mitochondrial iron observed. This effect is compounded by increased iron availability for mitochondrial uptake through (i) transferrin receptor1 up-regulation, increasing iron uptake from transferrin; (ii) decreased ferroportin1 expression, limiting iron export; (iii) increased expression of the heme catabolism enzyme heme oxygenase1 and down-regulation of ferritin-H and -L, both likely leading to increased "free iron" for mitochondrial uptake; and (iv) increased expression of the mammalian exocyst protein Sec15l1 and the mitochondrial iron importer mitoferrin-2 (Mfrn2), which facilitate cellular iron uptake and mitochondrial iron influx, respectively. Our results enable the construction of a model explaining the cytosolic iron deficiency and mitochondrial iron loading in the absence of frataxin, which is important for understanding the pathogenesis of Friedreich's ataxia.
我们使用肌肉肌酸激酶(MCK)条件性敲除铁调素的小鼠来阐明铁调素缺乏如何改变铁代谢。这具有重要意义,因为铁调素缺乏会导致弗里德赖希共济失调,这是一种以神经和心脏退化为特征的疾病。利用心脏组织,我们证明铁调素缺乏会导致参与3条线粒体利用途径的关键分子下调:铁硫簇(ISC)合成(铁硫簇支架蛋白1/2和半胱氨酸脱硫酶Nfs1)、线粒体铁储存(线粒体铁蛋白)和血红素合成(5-氨基酮戊酸脱水酶、原卟啉原氧化酶、羟甲基胆色素原合酶、尿卟啉原III合酶和亚铁螯合酶)。线粒体铁利用的显著减少以及由此导致的线粒体中血红素和ISC释放减少,可能是观察到的线粒体铁过量的原因。这种效应因以下因素而加剧:线粒体摄取铁的可用性增加,具体表现为(i)转铁蛋白受体1上调,增加从转铁蛋白摄取铁;(ii)铁转运蛋白1表达降低,限制铁输出;(iii)血红素分解代谢酶血红素加氧酶1表达增加以及铁蛋白-H和-L下调,两者都可能导致线粒体摄取的“游离铁”增加;(iv)哺乳动物外被蛋白Sec15l1和线粒体铁导入蛋白线粒体铁转运蛋白2(Mfrn2)表达增加,分别促进细胞铁摄取和线粒体铁流入。我们的结果有助于构建一个模型,解释在缺乏铁调素的情况下胞质铁缺乏和线粒体铁过载的现象,这对于理解弗里德赖希共济失调的发病机制很重要。