Cházaro-Ruiz Luis F, Kellenberger Andrea, Jähne Evelin, Adler Hans-Jürgen, Khandelwal Taruna, Dunsch Lothar
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Abteilung Elektrochemie und Leitfähige Polymere, Helmholtzstrasse 20, D-01069 Dresden, Germany.
Phys Chem Chem Phys. 2009 Aug 14;11(30):6505-13. doi: 10.1039/b904529e. Epub 2009 Jun 3.
The electrochemical oxidation of the chemically prepared polymer poly[2-(3-thienyl)ethyl acetate] (PTEtAc), its partially hydrolyzed derivative PTEtAcOH and the fully hydrolyzed compound poly[2-(3-thienyl)ethanol] (PTEtOH) was studied by in situ electron spin resonance (ESR)/UV-Vis-NIR spectroelectrochemistry. The spectroelectrochemical response of these films on ITO substrates was analyzed with respect to the influence of the functionalized alkyl side chain on polymer doping. The simultaneous use of both electron spin resonance and UV-Vis-NIR spectroscopy allows the analysis of the nature, extent and stability of the charge carriers electrogenerated during p-doping. It was found that PTEtAc has a higher capacity for charged species due to the flexibility of the longer side chains making the redox states more stable at different doping levels. At low doping levels the charged states are dominated by polaronic species while at high doping levels bipolarons and diamagnetic polaron pairs are formed. The presence of the OH groups in the polymer side chains of the hydrolyzed derivatives favors hydrogen bonds. These interactions by hydrogen bonding fix the conjugated chains thus making a charge-discharge reaction more difficult. At high doping levels the hydrolyzed polymers favor the formation of polaron pairs.
通过原位电子自旋共振(ESR)/紫外-可见-近红外光谱电化学研究了化学制备的聚合物聚[2-(3-噻吩基)乙酸乙酯](PTEtAc)、其部分水解衍生物PTEtAcOH和完全水解化合物聚[2-(3-噻吩基)乙醇](PTEtOH)的电化学氧化。针对功能化烷基侧链对聚合物掺杂的影响,分析了这些薄膜在ITO衬底上的光谱电化学响应。同时使用电子自旋共振和紫外-可见-近红外光谱能够分析在p型掺杂过程中产生的电荷载流子的性质、程度和稳定性。研究发现,由于较长侧链的柔韧性,PTEtAc对带电物种具有更高的容纳能力,使得氧化还原态在不同掺杂水平下更稳定。在低掺杂水平下,带电状态以极化子物种为主,而在高掺杂水平下会形成双极化子和顺磁极化子对。水解衍生物的聚合物侧链中OH基团的存在有利于形成氢键。这些氢键相互作用固定了共轭链,从而使充放电反应更加困难。在高掺杂水平下,水解聚合物有利于极化子对的形成。