Suppr超能文献

从分子角度看锂-氨溶液。

A molecular perspective on lithium-ammonia solutions.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853, USA.

出版信息

Angew Chem Int Ed Engl. 2009;48(44):8198-232. doi: 10.1002/anie.200900373.

Abstract

A detailed molecular orbital (MO) analysis of the structure and electronic properties of the great variety of species in lithium-ammonia solutions is provided. In the odd-electron, doublet states we have considered: e-@(NH3)n (the solvated electron, likely to be a dynamic ensemble of molecules), the Li(NH3)4 monomer, and the [Li(NH3)4+.e-@(NH3)n] ion-pairs, the Li 2s electron enters a diffuse orbital built up largely from the lowest unoccupied MOs of the ammonia molecules. The singly occupied MOs are bonding between the hydrogen atoms; we call this stabilizing interaction H-->H bonding. In e-@(NH3)n the odd electron is not located in the center of the cavities formed by the ammonia molecules. Possible species with two or more weakly interacting electrons also exhibit H-->H bonding. For these, we find that the singlet (S=0) states are slightly lower in energy than those with unpaired (S=1, 2...) spins. TD-DFT calculations on various ion-pairs show that the three most intense electronic excitations arise from the transition between the SOMO (of s pseudosymmetry) into the lowest lying p-like levels. The optical absorption spectra are relatively metal-independent, and account for the absorption tail which extends into the visible. This is the source of Sir Humphry Davy's "fine blue colour" first observed just over 200 years ago.

摘要

提供了对锂氨溶液中各种物种的结构和电子性质的详细分子轨道(MO)分析。在奇数电子、双重态中,我们考虑了:e-@(NH3)n(溶剂化电子,可能是分子的动态集合)、Li(NH3)4 单体和[Li(NH3)4+.e-@(NH3)n]离子对,Li 2s 电子进入由氨分子的最低未占据 MO 组成的弥散轨道。单占据 MO 之间的成键发生在氢原子之间;我们将这种稳定相互作用称为 H->H 键合。在 e-@(NH3)n 中,奇数电子不位于氨分子形成的腔中心。可能存在两个或更多弱相互作用电子的物种也表现出 H->H 键合。对于这些,我们发现单重态(S=0)的能量略低于具有未配对(S=1、2...)自旋的状态。对各种离子对的 TD-DFT 计算表明,三个最强烈的电子激发来自于从 SOMO(s 伪对称性)到最低的 p 类似能级的跃迁。光学吸收光谱相对独立于金属,解释了延伸到可见光的吸收尾部。这就是 Sir Humphry Davy 首先观察到的 200 多年前的“细蓝颜色”的来源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验