Suppr超能文献

水动力对前冲式蛇类捕食表现的限制。

Hydrodynamic constraints on prey-capture performance in forward-striking snakes.

机构信息

Department of Biology, Universiteit Antwerpen, Universiteitsplein 1, Antwerpen, Belgium.

出版信息

J R Soc Interface. 2010 May 6;7(46):773-85. doi: 10.1098/rsif.2009.0385. Epub 2009 Oct 14.

Abstract

Some specialized aquatic snakes such as Natrix tessellata strike at fish by rapidly accelerating their head towards the prey with their mouth opened widely. This strategy is believed to be suboptimal as relatively high drag forces act on the open jaws and, therefore, probably limit strike speed. Moreover, the bow wave in front of the snake's jaws could push prey away from the mouth, thus potentially explaining the relatively low capture success observed in these animals (<20%). Here, we used laser-scan based computational fluid dynamics to test these potential constraints on prey-capture performance for N. tessellata. Our simulations showed that drag force indeed increases drastically for striking at a high gape angle. However, we estimated the overall cost in slowing down strike speed to be less pronounced due to the instationary dynamics of the system. In contrast to the expectations, forward displacement of prey was relatively limited (<13% of head length), and forceful collisions between prey and the leading edge of the jaw regularly occurred. However, our models showed that precise aiming by the snake was needed to reduce the chance of deviating the prey to a path bypassing the mouth. Our study also indicated several hydrodynamic advantages for snakes to strike at relatively large prey.

摘要

一些特殊的水生蛇类,如虎斑颈槽蛇,通过张开大嘴快速加速头部向猎物发起攻击来捕食鱼类。这种策略被认为是次优的,因为张开的下颚会产生相对较高的阻力,因此可能限制了攻击速度。此外,蛇嘴前的冲击波可能会将猎物推开远离嘴部,从而可以解释在这些动物中观察到的相对较低的捕获成功率(<20%)。在这里,我们使用基于激光扫描的计算流体动力学来测试 N. tessellata 在捕食性能方面的这些潜在限制。我们的模拟表明,对于大张口角度的攻击,阻力确实会急剧增加。然而,我们估计由于系统的非定常动力学,减缓攻击速度的总体成本不太明显。与预期相反,猎物的向前位移相对较小(<头部长度的 13%),并且猎物和下颚前缘之间经常发生有力的碰撞。然而,我们的模型表明,蛇需要精确瞄准以降低猎物偏离嘴部路径的机会。我们的研究还表明,对于蛇类来说,攻击相对较大的猎物具有几种水动力优势。

相似文献

1
Hydrodynamic constraints on prey-capture performance in forward-striking snakes.
J R Soc Interface. 2010 May 6;7(46):773-85. doi: 10.1098/rsif.2009.0385. Epub 2009 Oct 14.
2
Snake circumvents constraints on prey size.
Nature. 2002 Jul 11;418(6894):143. doi: 10.1038/418143a.
4
Jaw protrusion enhances forces exerted on prey by suction feeding fishes.
J R Soc Interface. 2008 Dec 6;5(29):1445-57. doi: 10.1098/rsif.2008.0159.
5
Tentacled snakes turn C-starts to their advantage and predict future prey behavior.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11183-7. doi: 10.1073/pnas.0905183106. Epub 2009 Jun 19.
6
Perils of ingesting harmful prey by advanced snakes.
Biol Rev Camb Philos Soc. 2023 Feb;98(1):263-283. doi: 10.1111/brv.12906. Epub 2022 Oct 3.
7
Integrating the determinants of suction feeding performance in centrarchid fishes.
J Exp Biol. 2008 Oct;211(Pt 20):3296-305. doi: 10.1242/jeb.020909.
9
A forceful upper jaw facilitates picking-based prey capture: biomechanics of feeding in a butterflyfish, Chaetodon trichrous.
Zoology (Jena). 2013 Dec;116(6):336-47. doi: 10.1016/j.zool.2013.08.005. Epub 2013 Oct 4.
10
Morphological convergence as a consequence of extreme functional demands: examples from the feeding system of natricine snakes.
J Evol Biol. 2008 Sep;21(5):1438-48. doi: 10.1111/j.1420-9101.2008.01552.x. Epub 2008 Jun 10.

引用本文的文献

2
Exploring the functional meaning of head shape disparity in aquatic snakes.
Ecol Evol. 2020 Jul 6;10(14):6993-7005. doi: 10.1002/ece3.6380. eCollection 2020 Jul.
4
Repeated evolution of drag reduction at the air-water interface in diving kingfishers.
J R Soc Interface. 2019 May 31;16(154):20190125. doi: 10.1098/rsif.2019.0125.
5
Environment-dependent prey capture in the Atlantic mudskipper (Periophthalmus barbarus).
Biol Open. 2016 Nov 15;5(11):1735-1742. doi: 10.1242/bio.019794.
6
Does aquatic foraging impact head shape evolution in snakes?
Proc Biol Sci. 2016 Aug 31;283(1837). doi: 10.1098/rspb.2016.1645.
7
The benefits of planar circular mouths on suction feeding performance.
J R Soc Interface. 2012 Aug 7;9(73):1767-73. doi: 10.1098/rsif.2011.0904. Epub 2012 Feb 7.

本文引用的文献

2
Larval zebrafish rapidly sense the water flow of a predator's strike.
Biol Lett. 2009 Aug 23;5(4):477-9. doi: 10.1098/rsbl.2009.0048. Epub 2009 Mar 25.
3
Integrating the determinants of suction feeding performance in centrarchid fishes.
J Exp Biol. 2008 Oct;211(Pt 20):3296-305. doi: 10.1242/jeb.020909.
4
Aquatic suction feeding dynamics: insights from computational modelling.
J R Soc Interface. 2009 Feb 6;6(31):149-58. doi: 10.1098/rsif.2008.0311.
5
Morphological convergence as a consequence of extreme functional demands: examples from the feeding system of natricine snakes.
J Evol Biol. 2008 Sep;21(5):1438-48. doi: 10.1111/j.1420-9101.2008.01552.x. Epub 2008 Jun 10.
8
Why snakes have forked tongues.
Science. 1994 Mar 18;263(5153):1573-7. doi: 10.1126/science.263.5153.1573.
10
Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology.
Biol Cybern. 2006 Jan;94(1):67-85. doi: 10.1007/s00422-005-0032-x. Epub 2005 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验