Suppr超能文献

二色视者的色觉:I. 波长辨别力、亮度分布和颜色混合。

THE COLOR VISION OF DICHROMATS : I. WAVELENGTH DISCRIMINATION, BRIGHTNESS DISTRIBUTION, AND COLOR MIXTURE.

机构信息

Laboratory of Biophysics, Columbia University, New York.

出版信息

J Gen Physiol. 1936 Sep 20;20(1):57-82. doi: 10.1085/jgp.20.1.57.

Abstract
  1. Protanopes and deuteranopes show one maximum of wavelength discrimination which occurs near their neutral point in the region of 500 mmicro (blue-green for color-normal). The value of the just discriminable wavelength interval Deltalambda is about 1 mmicro at this point and is much like the normal. To either side of this, Deltalambda rises. It increases rapidly on the short-wave side, and slowly on the long-wave side, rising to about 50 mmicro at the two ends of the spectrum. 2. The brightness distribution in the spectrum for dichromats falls only partly outside the range established for color-normals. The protanope curve is narrower than normal, and its maximum lies nearly 15 mmicro to the left of it. The deuteranope curves are about the same width as the normal, and their maxima lie slightly but definitely to the right of it. The main difference between protanope and deuteranope spectrum sensitivity lies on the red side of brightness curves, where the deuteranope is strikingly higher. This difference furnishes the only reliable diagnostic sign which may be applied to an individual dichromat for separating the two types. 3. The average position for the neutral point of twenty-one protanopes is 496.5 mmicro; of twenty-five deuteranopes 504.3 mmicro. The range of variation in the position of neutral point is twice as great for the deuteranope as for the protanope. 4. Dichromatic gauging of the spectrum cannot yield unique mixture values for any wavelength because of the large stretches of poor wavelength discrimination. Data have therefore been secured which locate the spectral ranges that can match specific mixtures of two primaries when brightness differences are eliminated. The form of the data is much the same for a protanope and for a deuteranope; the only difference is in the relative brightness of the primaries. 5. Previously accepted anomalies in the spectral matching of dichromats which have led to the rejection of the third law of color mixture for them, have been eliminated. They are shown to have been due to the non-uniqueness of color matches and the usually disparate brightnesses of the primaries. Color mixture matches for dichromats are valid at all brightnesses.
摘要
  1. 正色盲和绿色盲者在其 500mmicro(对色觉正常者为蓝绿色)的中点区域表现出一个最大的波长辨别率。在这点上,可分辨的波长间隔 Deltalambda 的数值约为 1mmicro,与正常者非常相似。在此两侧,Deltalambda 增加。在短波侧迅速增加,在长波侧缓慢增加,在光谱的两端增加到约 50mmicro。

  2. 二色觉者的光谱亮度分布仅部分落在为色觉正常者确定的范围之外。正色盲者的曲线比正常者窄,其最大值位于其左侧约 15mmicro。绿色盲者的曲线与正常者大致相同宽度,其最大值位于其右侧,略有但明显。正色盲者和绿色盲者光谱灵敏度之间的主要区别在于亮度曲线的红色侧,其中绿色盲者明显更高。这个差异提供了唯一可靠的诊断标志,可以应用于个体二色觉者,以将两种类型分开。

  3. 二十一个正色盲者的中点平均位置为 496.5mmicro;二十五个绿色盲者为 504.3mmicro。中点位置的变化范围对于绿色盲者是正色盲者的两倍。

  4. 由于波长辨别率差的范围很大,因此对光谱进行双色觉测量不能为任何波长提供唯一的混合值。因此,已经获得了可以在消除亮度差异的情况下匹配两种原色的特定混合物的光谱范围的数据。对于正色盲者和绿色盲者,数据的形式大致相同;唯一的区别在于原色的相对亮度。

  5. 先前在二色觉者的光谱匹配中被认为是异常的,这些异常导致他们拒绝了颜色混合的第三定律,现已被消除。它们被证明是由于颜色匹配的非唯一性和原色通常不同的亮度。二色觉者的颜色混合匹配在所有亮度下都是有效的。

相似文献

4
Psychophysical estimates of visual pigment densities in red-green dichromats.
J Physiol. 1972 May;223(1):89-107. doi: 10.1113/jphysiol.1972.sp009836.
5
Novel form of a single X-linked visual pigment gene in a unique dichromatic color-vision defect.
Vis Neurosci. 2006 May-Aug;23(3-4):411-7. doi: 10.1017/S0952523806233029.
6
Colorblind vision; luminosity losses in the spectrum for dichromats.
J Gen Physiol. 1947 Nov 20;31(2):141-52. doi: 10.1085/jgp.31.2.141.
7
An experimental test of filter-aided dichromatic color discrimination.
Am J Optom Physiol Opt. 1984 Apr;61(4):256-64. doi: 10.1097/00006324-198404000-00005.
8
Equilibrium hue judgements of dichromats.
Vision Res. 1987;27(6):983-91. doi: 10.1016/0042-6989(87)90013-7.
10
Color discrimination in the tufted capuchin monkey, Sapajus spp.
PLoS One. 2013 Apr 19;8(4):e62255. doi: 10.1371/journal.pone.0062255. Print 2013.

引用本文的文献

1
Epistatic adaptive evolution of human color vision.
PLoS Genet. 2014 Dec 18;10(12):e1004884. doi: 10.1371/journal.pgen.1004884. eCollection 2014 Dec.
2
Orthogonal relations and color constancy in dichromatic colorblindness.
PLoS One. 2014 Sep 11;9(9):e107035. doi: 10.1371/journal.pone.0107035. eCollection 2014.
3
Color Blindness in Eleven Thousand Museum Visitors.
Yale J Biol Med. 1943 Oct;16(1):59-76.
4
Brightness, visual acuity and colour blindness.
Doc Ophthalmol. 1949;3:289-306. doi: 10.1007/BF00162607.
5
[Contribution to the problem of spectral light sensitvity in congentital disorders of color perception].
Albrecht Von Graefes Arch Ophthalmol. 1962;164:411-20. doi: 10.1007/BF00682196.
6
Richer color experience in observers with multiple photopigment opsin genes.
Psychon Bull Rev. 2001 Jun;8(2):244-61. doi: 10.3758/bf03196159.
7
Cone pigments in human deutan colour vision defects.
J Physiol. 1977 Apr;266(3):595-612. doi: 10.1113/jphysiol.1977.sp011784.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验