推断基因组规模代谢网络中的分支途径。

Inferring branching pathways in genome-scale metabolic networks.

作者信息

Pitkänen Esa, Jouhten Paula, Rousu Juho

机构信息

Department of Computer Science, University of Helsinki, Finland.

出版信息

BMC Syst Biol. 2009 Oct 29;3:103. doi: 10.1186/1752-0509-3-103.

Abstract

BACKGROUND

A central problem in computational metabolic modelling is how to find biochemically plausible pathways between metabolites in a metabolic network. Two general, complementary frameworks have been utilized to find metabolic pathways: constraint-based modelling and graph-theoretical path finding approaches. In constraint-based modelling, one aims to find pathways where metabolites are balanced in a pseudo steady-state. Constraint-based methods, such as elementary flux mode analysis, have typically a high computational cost stemming from a large number of steady-state pathways in a typical metabolic network. On the other hand, graph-theoretical approaches avoid the computational complexity of constraint-based methods by solving a simpler problem of finding shortest paths. However, while scaling well with network size, graph-theoretic methods generally tend to return more false positive pathways than constraint-based methods.

RESULTS

In this paper, we introduce a computational method, ReTrace, for finding biochemically relevant, branching metabolic pathways in an atom-level representation of metabolic networks. The method finds compact pathways which transfer a high fraction of atoms from source to target metabolites by considering combinations of linear shortest paths. In contrast to current steady-state pathway analysis methods, our method scales up well and is able to operate on genome-scale models. Further, we show that the pathways produced are biochemically meaningful by an example involving the biosynthesis of inosine 5'-monophosphate (IMP). In particular, the method is able to avoid typical problems associated with graph-theoretic approaches such as the need to define side metabolites or pathways not carrying any net carbon flux appearing in results. Finally, we discuss an application involving reconstruction of amino acid pathways of a recently sequenced organism demonstrating how measurement data can be easily incorporated into ReTrace analysis. ReTrace is licensed under GPL and is freely available for academic use at http://www.cs.helsinki.fi/group/sysfys/software/retrace/.

CONCLUSION

ReTrace is a useful method in metabolic path finding tasks, combining some of the best aspects in constraint-based and graph-theoretic methods. It finds use in a multitude of tasks ranging from metabolic engineering to metabolic reconstruction of recently sequenced organisms.

摘要

背景

计算代谢建模中的一个核心问题是如何在代谢网络中找到代谢物之间具有生物化学合理性的途径。人们利用了两种通用的、互补的框架来寻找代谢途径:基于约束的建模和基于图论的路径查找方法。在基于约束的建模中,目标是找到代谢物在伪稳态下保持平衡的途径。基于约束的方法,如基本通量模式分析,由于典型代谢网络中存在大量稳态途径,通常计算成本很高。另一方面,基于图论的方法通过解决一个更简单的寻找最短路径的问题,避免了基于约束的方法的计算复杂性。然而,虽然基于图论的方法能很好地随网络规模扩展,但与基于约束的方法相比,它们通常倾向于返回更多的假阳性途径。

结果

在本文中,我们介绍了一种计算方法ReTrace,用于在代谢网络的原子级表示中找到具有生物化学相关性的分支代谢途径。该方法通过考虑线性最短路径的组合来找到紧凑的途径,这些途径能将大部分原子从源代谢物转移到目标代谢物。与当前的稳态途径分析方法不同,我们的方法扩展性良好,能够在基因组规模模型上运行。此外,我们通过一个涉及5'-肌苷酸(IMP)生物合成的例子表明,所产生的途径具有生物化学意义。特别是,该方法能够避免与基于图论的方法相关的典型问题,如需要定义副代谢物或结果中出现的不携带任何净碳通量的途径。最后,我们讨论了一个涉及重建最近测序生物体氨基酸途径的应用,展示了如何将测量数据轻松纳入ReTrace分析。ReTrace遵循GPL许可,可在http://www.cs.helsinki.fi/group/sysfys/software/retrace/上免费用于学术用途。

结论

ReTrace是代谢路径查找任务中的一种有用方法,它结合了基于约束的方法和基于图论的方法的一些最佳方面。它可用于从代谢工程到最近测序生物体的代谢重建等众多任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b68a/2791103/0e8ac252befe/1752-0509-3-103-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索