Suppr超能文献

用于预测非线性饱和动力学药物浓度积累和衰减的 1-exp 方程积分的显式解。

Explicit solution of integrated 1 - exp equation for predicting accumulation and decline of concentrations for drugs obeying nonlinear saturation kinetics.

机构信息

Nephrology, Medical Faculty, University of Ulm, Ulm, Germany.

出版信息

Ther Drug Monit. 2009 Dec;31(6):783-5. doi: 10.1097/FTD.0b013e3181c0c0fa.

Abstract

To describe nonlinear, saturable pharmacokinetics, the Michaelis-Menten equation is frequently used. However, the Michaelis-Menten equation has no integrated solution for concentrations but only for the time factor. Application of the Lambert W function was proposed recently to obtain an integrated solution of the Michaelis-Menten equation. As an alternative to the Michaelis-Menten equation, a 1 - exp equation has been used to describe saturable kinetics, with the advantage that the integrated 1 - exp equation has an explicit solution for concentrations. We used the integrated 1 - exp equation to predict the accumulation kinetics and the nonlinear concentration decline for a proposed fictive drug. In agreement with the recently proposed method, we found that for the integrated 1 - exp equation no steady state is obtained if the maximum rate of change in concentrations (Vmax) within interval (Tau) is less than the difference between peak and trough concentrations (Vmax x Tau < C peak - C trough).

摘要

为了描述非线性、饱和药代动力学,经常使用米氏方程。然而,米氏方程没有浓度的积分解,只有时间因素的积分解。最近提出了应用 Lambert W 函数来获得米氏方程的积分解。作为米氏方程的替代方案,1-exp 方程已被用于描述饱和动力学,其优点是 1-exp 方程的积分形式具有浓度的显式解。我们使用积分 1-exp 方程来预测拟议药物的积累动力学和非线性浓度下降。与最近提出的方法一致,我们发现,如果浓度变化的最大速率(Vmax)在间隔(Tau)内小于峰和谷浓度之间的差值(Vmax x Tau < Cpeak - Ctrough),则积分 1-exp 方程不会达到稳态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验