Department of Molecular Biology, Biochemistry and Pathology, Centre de Recherche L'Hotel-Dieu de Quebec, Universite Laval, QC, Canada.
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19854-9. doi: 10.1073/pnas.0910134106. Epub 2009 Nov 10.
Identification of thyroid hormone receptor (TR) co-regulators has enhanced our understanding of thyroid hormone (TH) action. However, it is likely that many other co-regulators remained unidentified, and unbiased methods are required to discover these proteins. We have previously demonstrated that the yeast Saccharomyces cerevisiae is an excellent system in which to study TR action, and that defined TR signaling complexes in a eukaryotic background devoid of complicating influences of mammalian cell co-regulators can be constructed and analyzed for endogenous yeast genes, many of which are conserved in mammals. Here, a modified synthetic genetic array analysis was performed by crossing a yeast strain that expressed TRbeta1 and the co-activator GRIP1/SRC2 with 384 yeast strains bearing deletions of known genes. Eight genes essential for TH action were isolated, of which 4 are conserved in mammals. Examination of one, the yeast CCR4 and its human homolog CCR4/NOT6 (hCCR4), confirmed that (i) transfected CCR4 potentiates a TH response in cultured cells more efficiently than established TR co-activators and (ii) knockdown of CCR4 expression strongly inhibited a TH response (>80%). TH treatment promoted rapid and sustained hCCR4 recruitment to the TH-responsive deiodinase 1 promoter and TR co-localizes with hCCR4 in the nucleus and interacts with hCCR4 in 2-hybrid and pull-down assays. These findings indicate that a modified yeast synthetic genetic array strategy is a feasible method for unbiased identification of conserved genes essential for TR and other nuclear receptor hormone functions in mammals.
鉴定甲状腺激素受体 (TR) 共调节剂增强了我们对甲状腺激素 (TH) 作用的理解。然而,很可能还有许多其他共调节剂尚未被发现,需要使用无偏方法来发现这些蛋白质。我们之前已经证明,酵母酿酒酵母是研究 TR 作用的绝佳系统,并且可以在没有哺乳动物细胞共调节剂复杂影响的真核背景下构建和分析定义的 TR 信号复合物,这些复合物可以用于分析内源性酵母基因,其中许多在哺乳动物中是保守的。在这里,通过将表达 TRβ1 和共激活因子 GRIP1/SRC2 的酵母菌株与携带已知基因缺失的 384 个酵母菌株进行杂交,进行了改良的合成遗传阵列分析。分离出了 8 个对 TH 作用至关重要的基因,其中 4 个在哺乳动物中是保守的。对酵母 CCR4 和其人类同源物 CCR4/NOT6 (hCCR4) 的研究证实:(i)转染的 CCR4 比已建立的 TR 共激活剂更有效地增强培养细胞中的 TH 反应;(ii)CCR4 表达的敲低强烈抑制 TH 反应(>80%)。TH 处理促进了 hCCR4 在 TH 反应性脱碘酶 1 启动子上的快速和持续募集,并且 TR 与 hCCR4 在核内共定位,并在 2 杂交和下拉测定中相互作用。这些发现表明,改良的酵母合成遗传阵列策略是一种可行的方法,可用于无偏鉴定对 TR 和其他核受体激素在哺乳动物中的功能至关重要的保守基因。