Li Zi Rui, Liu Gui Rong, Han Jongyoon, Cheng Yuan, Chen Yu Zong, Wang Jian-Sheng, Hadjiconstantinou Nicolas G
The Singapore-MIT Alliance, EA-04-10, 4 Engineering Drive 3, Singapore 117576, Singapore.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041911. doi: 10.1103/PhysRevE.80.041911. Epub 2009 Oct 8.
We present a theoretical model describing Ogston (pore size comparable to or larger than the characteristic molecular dimension) sieving of rigid isotropic and anisotropic biomolecules in nanofluidic molecular filter arrays comprising of alternating deep and shallow regions. Starting from a quasi-one-dimensional drift-diffusion description, which captures the interplay between the driving electric force, entropic barrier and molecular diffusion, we derive explicit analytical results for the effective mobility and trapping time. Our results elucidate the effects of field strength, device geometry and entropic barrier height, providing a robust tool for the design and optimization of nanofilter/nanopore systems. Specifically, we show that Ogston sieving becomes negligible when the length of shallow region becomes sufficiently small, mainly due to efficient diffusional transport through the short shallow region. Our theoretical results are in line with experimental observations and provide important design insight for nanofluidic systems.
我们提出了一个理论模型,用于描述在由交替的深区和浅区组成的纳米流体分子过滤阵列中,刚性各向同性和各向异性生物分子的奥格斯顿筛分(孔径与特征分子尺寸相当或更大)。从准一维漂移扩散描述出发,该描述捕捉了驱动电力、熵垒和分子扩散之间的相互作用,我们推导出了有效迁移率和捕获时间的明确解析结果。我们的结果阐明了场强、器件几何形状和熵垒高度的影响,为纳米过滤器/纳米孔系统的设计和优化提供了一个有力工具。具体而言,我们表明,当浅区长度变得足够小时,奥格斯顿筛分变得可以忽略不计,这主要是由于通过短浅区的高效扩散传输。我们的理论结果与实验观察结果一致,并为纳米流体系统提供了重要的设计见解。