Suppr超能文献

通过切换单根硅链状光子晶体光纤实现的紫外-可见非超连续超快光源。

Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers.

作者信息

Tu Haohua, Boppart Stephen A

机构信息

Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Opt Express. 2009 Sep 28;17(20):17983-8. doi: 10.1364/OE.17.017983.

Abstract

Cherenkov radiation from short photonic crystal fiber with a high air-fill fraction can selectively convert the 1020 nm fs pump pulses from a laser oscillator to the fundamental-mode signal pulses at a significantly shorter wavelength. Across the ultraviolet-visible spectral region, the typical fiber output is characterized by a single isolated Cherenkov band having a multimilliwatt-level average power, a Gaussian-shaped spectrum, and a 3-dB bandwidth of 15 nm. By selecting photonic crystal fibers with smaller cores, the central wavelength of the Cherenkov band can be easily extended to 347 nm in the ultraviolet, in sharp contrast to various supercontinuum or non-supercontinuum fiber sources that have difficulty extending their emission spectra below 400 nm. The supercontinuum generation often associated with fs pulse-pumped fibers is efficiently suppressed by detuning the zero-dispersion wavelength of the photonic crystal fiber far shorter than the pump wavelength, a condition termed as the short nonlinear-interaction condition.

摘要

具有高空气填充率的短光子晶体光纤产生的切伦科夫辐射能够将激光振荡器输出的1020纳米飞秒泵浦脉冲选择性地转换为波长显著更短的基模信号脉冲。在紫外-可见光谱区域,典型的光纤输出表现为具有多毫瓦级平均功率、高斯形状光谱以及15纳米3分贝带宽的单个孤立切伦科夫带。通过选择纤芯更小的光子晶体光纤,切伦科夫带的中心波长能够轻松扩展至紫外波段的347纳米,这与各种难以将其发射光谱扩展至400纳米以下的超连续或非超连续光纤光源形成鲜明对比。通过将光子晶体光纤的零色散波长调谐至远低于泵浦波长,即所谓的短非线性相互作用条件,通常与飞秒脉冲泵浦光纤相关的超连续谱产生被有效抑制。

相似文献

3
Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser.
Opt Express. 2008 Sep 15;16(19):14435-47. doi: 10.1364/oe.16.014435.
4
Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser.
Opt Express. 2010 May 24;18(11):11046-51. doi: 10.1364/OE.18.011046.
5
A single source femtosecond-millisecond broadband spectrometer.
Rev Sci Instrum. 2009 Feb;80(2):026102. doi: 10.1063/1.3070516.
6
Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber.
Opt Express. 2009 Jun 8;17(12):10393-8. doi: 10.1364/oe.17.010393.
10
Nonlinear optics in the LP(02) higher-order mode of a fiber.
Opt Express. 2013 Jul 29;21(15):17786-99. doi: 10.1364/OE.21.017786.

引用本文的文献

1
Intense Two-Octave Ultraviolet-Visible-Infrared Supercontinuum Laser via High-Efficiency One-Octave Second-Harmonic Generation.
Research (Wash D C). 2022 Jun 14;2022:9871729. doi: 10.34133/2022/9871729. eCollection 2022.
2
Tailored Multi-Color Dispersive Wave Formation in Quasi-Phase-Matched Exposed Core Fibers.
Adv Sci (Weinh). 2022 Mar;9(8):e2103864. doi: 10.1002/advs.202103864. Epub 2022 Jan 17.
3
Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation.
Photonics Res. 2017 Dec;5(6):750-761. doi: 10.1364/PRJ.5.000750. Epub 2017 Nov 27.
4
Progress in Cherenkov femtosecond fiber lasers.
J Phys D Appl Phys. 2016 Jan 20;49(2). doi: 10.1088/0022-3727/49/2/023001. Epub 2015 Dec 9.
6
Coherent fiber supercontinuum for biophotonics.
Laser Photon Rev. 2013 Sep 1;7(5). doi: 10.1002/lpor.201200014.

本文引用的文献

2
Intermodal four-wave mixing from femtosecond pulse-pumped photonic crystal fiber.
Appl Phys Lett. 2009 Mar 9;94(10):101109. doi: 10.1063/1.3094127. Epub 2009 Mar 12.
3
Dispersive wave blue-shift in supercontinuum generation.
Opt Express. 2006 Dec 11;14(25):11997-2007. doi: 10.1364/oe.14.011997.
7
Enhanced bandwidth of supercontinuum generated in microstructured fibers.
Opt Express. 2004 Jul 26;12(15):3471-80. doi: 10.1364/opex.12.003471.
8
Confocal laser scanning fluorescence microscopy with a visible continuum source.
Opt Express. 2004 Jun 28;12(13):2844-50. doi: 10.1364/opex.12.002844.
9
Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber.
Opt Express. 2004 May 3;12(9):1932-7. doi: 10.1364/opex.12.001932.
10
Dispersive wave generation by solitons in microstructured optical fibers.
Opt Express. 2004 Jan 12;12(1):124-35. doi: 10.1364/opex.12.000124.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验