Cassimatis Nicholas, Bignoli Perrin, Bugajska Magdalena, Dugas Scott, Kurup Unmesh, Murugesan Arthi, Bello Paul
Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
IEEE Trans Syst Man Cybern B Cybern. 2010 Jun;40(3):903-14. doi: 10.1109/TSMCB.2009.2033262. Epub 2009 Nov 13.
We describe a cognitive architecture for creating more robust intelligent systems. Our approach is to enable hybrids of algorithms based on different computational formalisms to be executed. The architecture is motivated by some features of human cognitive architecture and the following beliefs: 1) Most existing computational methods often exhibit some of the characteristics desired of intelligent systems at the cost of other desired characteristics and 2) a system exhibiting robust intelligence can be designed by implementing hybrids of these computational methods. The main obstacle to this approach is that the various relevant computational methods are based on data structures and algorithms that are difficult to integrate into one system. We describe a new method of executing hybrids of algorithms using the focus of attention of multiple modules. The key to this approach is the following two principles: 1) Algorithms based on very different computational frameworks (e.g., logical reasoning, probabilistic inference, and case-based reasoning) can be implemented using the same set of five common functions and 2) each of these common functions can be executed using multiple data structures and algorithms. This approach has been embodied in the Polyscheme cognitive architecture. Systems based on Polyscheme in planning, spatial reasoning, robotics, and information retrieval illustrate that this approach to hybridizing algorithms enables qualitative and measurable quantitative advances in the abilities of intelligent systems.
我们描述了一种用于创建更强大智能系统的认知架构。我们的方法是使基于不同计算形式的算法混合体得以执行。该架构的灵感来源于人类认知架构的一些特征以及以下信念:1)大多数现有的计算方法往往以牺牲其他期望特征为代价,展现出智能系统所需的某些特征;2)通过实现这些计算方法的混合体,可以设计出具有强大智能的系统。这种方法的主要障碍在于,各种相关的计算方法基于难以集成到一个系统中的数据结构和算法。我们描述了一种利用多个模块的注意力焦点来执行算法混合体的新方法。这种方法的关键在于以下两个原则:1)基于非常不同计算框架(例如逻辑推理、概率推理和基于案例的推理)的算法可以使用同一组五个通用函数来实现;2)这些通用函数中的每一个都可以使用多种数据结构和算法来执行。这种方法已体现在Polyscheme认知架构中。基于Polyscheme的系统在规划、空间推理、机器人技术和信息检索方面的应用表明,这种算法混合方法能够在智能系统的能力方面实现定性和可测量的定量进步。