Suppr超能文献

双曲饱和。

Hyperbolic saturation.

机构信息

Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, 48824, USA.

出版信息

Bull Math Biol. 2010 Jul;72(5):1315-22. doi: 10.1007/s11538-009-9475-x. Epub 2009 Nov 14.

Abstract

Several hyperbolically saturating empirical models, such as the Michaelis-Menten rate equation, Monod's relative population growth rate, competitive inhibition, and Langmuir's adsorption, are rederived from a simple queuing relation. The resulting derivations reveal and potentially explain the underlying structure and meaning of such empirical models. This view is proposed as a unifying heuristic.

摘要

几种超饱和的经验模型,如米氏方程、Monod 相对种群增长率、竞争抑制和 Langmuir 吸附等,都可以从一个简单的排队关系中重新推导出来。由此产生的推导揭示并潜在地解释了这些经验模型的基本结构和意义。这一观点被提出作为一种统一的启发式方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验