Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA.
Anesth Analg. 2010 Feb;110(2):431-7. doi: 10.1213/ANE.0b013e3181af8015.
Anesthetic drugs cause brain cell death and long-term neurocognitive dysfunction in neonatal rats. Recently, human data also suggest that anesthesia early in life may cause cognitive impairment. The connection between cell death and neurocognitive decline is uncertain. It is conceivable that mechanisms other than brain cell death contribute to neurocognitive outcome of neonatal anesthesia. In a series of experiments, we demonstrate that isoflurane exposure causes significant hypercarbia in postnatal day 7 rats and that exposure to isoflurane or carbon dioxide for 4 h provoked brain cell death. However, 1 h of isoflurane exposure was not sufficient to cause brain cell death. Moreover, only 4 h of isoflurane exposure, but not 1 or 2 h of exposure or 4 h of carbon dioxide, led to impaired hippocampal function,questioning the association between anesthesia-induced brain cell death and neurocognitive dysfunction. Neurogenesis both in the developing and adult dentate gyrus is important for hippocampal function, specifically learning and memory. γ-Amino-butyric-acid regulates proliferation and neuronal differentiation both in the developing and the adult brain. Inhaled anesthetics are γ-amino-butyric-acid-ergic and may therefore affect neurogenesis, which could be an alternative mechanism mediating anesthesia-induced neurocognitive decline in immature rats. Understanding the mechanism will help guide clinical trials aiming to define the scope of the problem in humans and may lead to preventive and therapeutic strategies.
麻醉药物可导致新生大鼠脑细胞死亡和长期神经认知功能障碍。最近,人类数据也表明,生命早期的麻醉可能导致认知障碍。细胞死亡与神经认知能力下降之间的联系尚不确定。可以想象,除了脑细胞死亡之外,其他机制也可能对新生儿麻醉的神经认知结果产生影响。在一系列实验中,我们证明异氟烷暴露可导致出生后第 7 天的大鼠发生明显的高碳酸血症,并且异氟烷或二氧化碳暴露 4 小时会引起脑细胞死亡。然而,1 小时的异氟烷暴露不足以引起脑细胞死亡。此外,只有 4 小时的异氟烷暴露,而不是 1 或 2 小时的暴露或 4 小时的二氧化碳暴露,会导致海马功能受损,这使得麻醉引起的脑细胞死亡与神经认知功能障碍之间的关联受到质疑。发育中和成年齿状回中的神经发生对于海马功能(特别是学习和记忆)非常重要。γ-氨基丁酸调节发育中和成年大脑中的增殖和神经元分化。吸入麻醉剂是γ-氨基丁酸能的,因此可能会影响神经发生,这可能是介导未成熟大鼠麻醉后神经认知下降的另一种机制。了解该机制将有助于指导旨在确定人类问题范围的临床试验,并可能导致预防和治疗策略。