Wang Yuan, Arsenault Gilles, Riddell Nicole, McCrindle Robert, McAlees Alan, Martin Jonathan W
Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada, T6G 2G3.
Environ Sci Technol. 2009 Nov 1;43(21):8283-9. doi: 10.1021/es902041s.
Perfluorooctane sulfonate (PFOS) is the most prominent perfluoroalkyl substance found in the serum of humans and wildlife, yet the major routes by which exposure occurs are not clear. An important issue facing both the scientific and chemical regulatory communities is the extent to which PFOS concentrations in biota are attributable to direct exposure versus metabolism of PFOS-precursors (higher molecular weight derivatives that can be biotransformed to PFOS). Given that certain branched PFOS-precursors are chiral, we hypothesized that nonracemic proportions of PFOS isomers in biological samples could be used as a marker of significant exposure to PFOS-precursors. In this proof-of-principle study we examined the enantiomer-specific biotransformation of a high-purity model PFOS-precursor isomer: C(6)F(13)C*F(CF(3))SO(2)N(H)CH(2)(C(6)H(4))OCH(3) (named 1m-PreFOS hereafter, and whereby * indicates the chiral carbon center). A method for the enantiospecific separation of a compound with a long perfluoroalkyl chain and a chiral center was developed and applied to evaluate the enantioselectivity of 1m-PreFOS biotransformation in human liver microsomes. Gradient elution in reversed-phase mode on a Chiralpak IC column permitted the near-baseline separation of the two enantiomers (E1 and E2, nomenclature based on retention order) in 65 min. Microsome incubations demonstrated that E1 and E2 were metabolized at significantly different rates; k(E1) = 6.5(+/-0.3) x 10(-2) min(-1) (half-life = 10.6 min) and k(E2) = 5.2(+/-0.3) x 10(-2) min(-1) (half-life = 13.3 min), respectively. These results suggest that tracking of PFOS exposure sources by enantiomeric fractionation is feasible, and that new analytical methods for the enantioselective analysis of PFOS isomers in human and environmental samples should be developed.
全氟辛烷磺酸(PFOS)是在人类和野生动物血清中发现的最主要的全氟烷基物质,但其主要暴露途径尚不清楚。科学界和化学监管界面临的一个重要问题是,生物群中PFOS的浓度在多大程度上可归因于直接暴露,以及PFOS前体(可生物转化为PFOS的高分子量衍生物)的代谢。鉴于某些支链PFOS前体是手性的,我们假设生物样品中PFOS异构体的非外消旋比例可作为大量暴露于PFOS前体的标志物。在这项原理验证研究中,我们研究了一种高纯度模型PFOS前体异构体的对映体特异性生物转化:C(6)F(13)CF(CF(3))SO(2)N(H)CH(2)(C(6)H(4))OCH(³)(以下简称1m-PreFOS,其中表示手性碳中心)。开发了一种用于对具有长全氟烷基链和手性中心的化合物进行对映体特异性分离的方法,并将其应用于评估1m-PreFOS在人肝微粒体中生物转化的对映选择性。在Chiralpak IC柱上以反相模式进行梯度洗脱,可在65分钟内将近基线分离两种对映体(E1和E2,根据保留顺序命名)。微粒体孵育表明,E1和E2的代谢速率显著不同;k(E1) = 6.5(±0.3) x 10⁻² min⁻¹(半衰期 = 10.6分钟),k(E2) = 5.2(±0.3) x 10⁻² min⁻¹(半衰期 = 13.3分钟)。这些结果表明,通过对映体分馏追踪PFOS暴露源是可行的,并且应开发用于对人和环境样品中PFOS异构体进行对映选择性分析的新分析方法。