用于临床实验室乳腺生物标志物常规分析的组织微阵列。

Tissue microarray for routine analysis of breast biomarkers in the clinical laboratory.

作者信息

Thomson Thomas A, Zhou Chen, Chu Christina, Knight Bryan

机构信息

Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency, Vancouver, Canada.

出版信息

Am J Clin Pathol. 2009 Dec;132(6):899-905. doi: 10.1309/AJCPW37QGECDYCDO.

Abstract

Tissue microarray analysis (TMA) allows multiple analyses on multiple patients on sections from a single paraffin block. Although it is widely used in research and in quality assurance settings, there are few references to its use in clinical practice. This study evaluated TMA assessment of breast biomarkers using immunohistochemical analysis in a clinical histopathology laboratory. Performance parameters, interobserver variability, and concordance between TMA and whole section results were assessed. The arrays had few lost or noninformative cores. A loss of stain intensity occurred in the arrays compared with the whole sections with some but not all antibodies, highlighting the need to validate the staining protocol for each antibody used on TMA sections. With recommended guidelines for specimen selection and reporting, TMA was found to be an economical replacement for whole section analysis for breast biomarkers.

摘要

组织微阵列分析(TMA)能够对来自单个石蜡块的切片上的多位患者进行多项分析。尽管它在研究和质量保证环境中被广泛使用,但在临床实践中的应用参考却很少。本研究在临床组织病理学实验室中使用免疫组织化学分析评估了TMA对乳腺生物标志物的评估。评估了性能参数、观察者间的变异性以及TMA与全切片结果之间的一致性。阵列中几乎没有丢失或无信息的核心。与全切片相比,部分而非全部抗体在阵列中出现了染色强度的损失,这凸显了对TMA切片上使用的每种抗体的染色方案进行验证的必要性。遵循推荐的标本选择和报告指南,发现TMA是乳腺生物标志物全切片分析的一种经济替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索