Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
Am J Hum Genet. 2009 Dec;85(6):786-800. doi: 10.1016/j.ajhg.2009.10.017.
Personal genome tests are now offered direct-to-consumer (DTC) via genetic variants identified by genome-wide association studies (GWAS) for common diseases. Tests report risk estimates (age-specific and lifetime) for various diseases based on genotypes at multiple loci. However, uncertainty surrounding such risk estimates has not been systematically investigated. With breast cancer as an example, we examined the combined effect of uncertainties in population incidence rates, genotype frequency, effect sizes, and models of joint effects among genetic variants on lifetime risk estimates. We performed simulations to estimate lifetime breast cancer risk for carriers and noncarriers of genetic variants. We derived population-based cancer incidence rates from Surveillance, Epidemiology, and End Results (SEER) Program and comparative international data. We used data for non-Hispanic white women from 2003 to 2005. We derived genotype frequencies and effect sizes from published GWAS and meta-analyses. For a single genetic variant in FGFR2 gene (rs2981582), combination of uncertainty in these parameters produced risk estimates where upper and lower 95% simulation intervals differed by more than 3-fold. Difference in population incidence rates was the largest contributor to variation in risk estimates. For a panel of five genetic variants, estimated lifetime risk of developing breast cancer before age 80 for a woman that carried all risk variants ranged from 6.1% to 21%, depending on assumptions of additive or multiplicative joint effects and breast cancer incidence rates. Epidemiologic parameters involved in computation of disease risk have substantial uncertainty, and cumulative uncertainty should be properly recognized. Reliance on point estimates alone could be seriously misleading.
个人基因组测试现在通过全基因组关联研究 (GWAS) 确定的遗传变异直接向消费者 (DTC) 提供,用于常见疾病。测试根据多个基因座的基因型报告各种疾病的风险估计值(特定年龄和终身)。然而,围绕这些风险估计的不确定性尚未得到系统研究。以乳腺癌为例,我们研究了人群发病率、基因型频率、效应大小以及遗传变异联合效应模型的不确定性对终身风险估计的综合影响。我们进行了模拟,以估计遗传变异携带者和非携带者的终身乳腺癌风险。我们从监测、流行病学和最终结果 (SEER) 计划和比较国际数据中得出基于人群的癌症发病率。我们使用了 2003 年至 2005 年非西班牙裔白人女性的数据。我们从已发表的 GWAS 和荟萃分析中得出了基因型频率和效应大小。对于 FGFR2 基因中的单个遗传变异 (rs2981582),这些参数的不确定性组合产生的风险估计值中,上限和下限 95%模拟区间相差超过 3 倍。人群发病率的差异是风险估计值变化的最大贡献者。对于五个遗传变异的面板,携带所有风险变异的女性在 80 岁之前患乳腺癌的终身风险估计值从 6.1%到 21%不等,具体取决于加性或乘法联合效应和乳腺癌发病率的假设。计算疾病风险所涉及的流行病学参数存在很大的不确定性,应正确认识累积不确定性。仅依赖点估计可能会产生严重的误导。