Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.
Int J Biochem Cell Biol. 2010 May;42(5):604-22. doi: 10.1016/j.biocel.2009.11.008. Epub 2009 Nov 18.
In this review we compare situations under which the major cellular role of mitochondria, oxidative phosphorylation (OXPHOS), is transiently suppressed. Two types of cellular bioenergetics exist, related to the predominance of glycolysis either disconnected or fully connected to OXPHOS: i) "glycolytic" phenotype, when the glycolytic end-product pyruvate is marginally used for OXPHOS; and, ii) OXPHOS phenotype with fully developed and active OXPHOS machinery consuming all pyruvate. A switch to glycolytic phenotype is typically orchestrated by gene reprogramming due to AMP-activated protein kinase, hypoxia-induced factor (HIF), NFkappaB, mTOR, and by oncogenes. At normoxia a continuous hydroxylation of HIF1alpha prolines by prolyl hydroxylase domain enzymes (PHDs) and asparagines by factor-inhibiting HIF (FIH) occurs, resulting in HIF1alpha polyubiquitination/degradation. With O(2) below a threshold level (<5% O(2)) cytosolic H(2)O(2) raises and oxidizes Fe(2+) of PHDs and FIH, inactivates them, thus stabilizing HIFalpha and upregulating transcription of specific genes. The source of H(2)O(2) burst (not manifested in isolated mitochondria) is the respiratory chain Complex III Q(O) site. Frequently hypoxic microenvironment of malignant tumors stimulates HIF-mediated conversion to the glycolytic state, nevertheless OXPHOS tumors also exist. The glycolytic mode predominates prior to implantation phase of embryonic development, hence in embryonic stem cells. Finally, a "Poderoso hypothesis" is discussed, predicting repetitive conversions to a transient glycolytic mode after a meal and concomitant insulin signaling. Accordingly, insulin stimulates mitochondrial NO synthase simultaneously with cellular glucose intake. The elevated NO diminishes respiration by inhibiting cytochrome c oxidase. Type 2 diabetes may result from the accumulated impact of such nitrosative/oxidative stress.
在这篇综述中,我们比较了线粒体的主要细胞功能,即氧化磷酸化(OXPHOS),短暂受到抑制的情况。存在两种类型的细胞生物能量学,与糖酵解的优势相关,要么与 OXPHOS 完全分离,要么完全连接:i)“糖酵解”表型,当糖酵解的终产物丙酮酸仅少量用于 OXPHOS 时;ii)OXPHOS 表型,具有完全发育和活跃的 OXPHOS 机制,消耗所有丙酮酸。向糖酵解表型的转变通常是由 AMP 激活的蛋白激酶、缺氧诱导因子(HIF)、NFkappaB、mTOR 和致癌基因引起的基因重编程协调的。在常氧条件下,脯氨酰羟化酶结构域酶(PHDs)持续羟化 HIF1alpha 的脯氨酸,通过因子抑制 HIF(FIH)羟化天冬酰胺,导致 HIF1alpha 多泛素化/降解。当氧水平低于阈值(<5% O2)时,细胞溶质 H2O2 升高并氧化 PHDs 和 FIH 的 Fe2+,使其失活,从而稳定 HIF1alpha 并上调特定基因的转录。H2O2 爆发的来源(在分离的线粒体中未表现出来)是呼吸链复合物 III Q(O)位点。恶性肿瘤的低氧微环境经常刺激 HIF 介导的向糖酵解状态的转化,但也存在 OXPHOS 肿瘤。糖酵解模式在胚胎发育的植入前阶段占主导地位,因此在胚胎干细胞中也是如此。最后,讨论了“Poderoso 假说”,预测在餐后和伴随胰岛素信号的情况下,反复转换为短暂的糖酵解模式。因此,胰岛素刺激线粒体一氧化氮合酶的同时伴随着细胞葡萄糖摄取。升高的 NO 通过抑制细胞色素 c 氧化酶来减少呼吸。2 型糖尿病可能是由于这种硝化/氧化应激的累积影响所致。