Rehabilitation Clinical Trials Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
Respir Med. 2010 Mar;104(3):389-96. doi: 10.1016/j.rmed.2009.10.014.
During heavy exercise in chronic obstructive pulmonary disease (COPD), dynamic airways compression leads to a progressive fall in intrabreath flow. This is manifested by concavity in the spontaneous expiratory flow-volume (SEFV) curve. We developed a method to quantify the SEFV curve configuration breath-by-breath during incremental exercise utilizing a computerized analysis. The flow signal was digitized at 100Hz. For each breath's SEFV curve, points of highest flow (V (max)) and end-expiration (V (EE)) were identified to define a rectangle's diagonal. Fractional area within the rectangle below the SEFV curve was defined as the "rectangular area ratio" (RAR); RAR <0.5 signifies concavity of the SEFV. To illustrate the utility of this method, time courses of RAR during incremental exercise in 12 healthy and 17 COPD individuals (FEV(1) %Pred.=39+/-12) were compared. SEFV in healthy individuals manifested progressively more convex SEFV curves throughout exercise (RAR=0.56+/-0.08 at rest and 0.61+/-0.05 at peak exercise), but became progressively more concave in COPD patients (RAR=0.52+/-0.08 at rest and 0.46+/-0.06 at peak exercise). In conclusion, breath-by-breath quantification of SEFV curve concavity describes progressive shape changes denoting expiratory flow limitation during incremental exercise in COPD patients. Further studies are warranted to establish whether this novel method can be a reliable indicator of expiratory flow limitation during exercise and to examine the relationship of RAR time course to the development of dynamic hyperinflation.
在慢性阻塞性肺疾病(COPD)患者进行剧烈运动时,动态气道压缩导致呼吸内的气流逐渐下降。这表现为自发呼气流量-容积(SEFV)曲线的凹度。我们开发了一种方法,利用计算机分析对递增运动过程中的每口气的 SEFV 曲线配置进行定量分析。流量信号以 100Hz 数字化。对于每个呼吸的 SEFV 曲线,确定最高流量(V(max)) 和呼气末(V(EE)) 点以定义矩形的对角线。SEFV 曲线下方矩形内的分数面积被定义为“矩形面积比”(RAR);RAR<0.5 表示 SEFV 的凹度。为了说明该方法的实用性,比较了 12 名健康人和 17 名 COPD 患者(FEV(1) %Pred.=39+/-12)在递增运动过程中的 RAR 时间过程。健康个体的 SEFV 在整个运动过程中表现出逐渐更凸的 SEFV 曲线(RAR=0.56+/-0.08 在休息时和 0.61+/-0.05 在运动峰值时),但在 COPD 患者中逐渐变得更凹(RAR=0.52+/-0.08 在休息时和 0.46+/-0.06 在运动峰值时)。总之,SEFV 曲线凹度的逐口气定量描述了 COPD 患者递增运动中呼气流量限制的渐进形状变化。需要进一步的研究来确定这种新方法是否可以成为运动中呼气流量限制的可靠指标,并研究 RAR 时间过程与动态过度充气发展的关系。