Talbot Kimberley, Meixner Scott C, Pryzdial Edward L G
Canadian Blood Services, Research and Development Department, Vancouver, BC, Canada V6T 1Z3.
Biochim Biophys Acta. 2010 Apr;1804(4):723-30. doi: 10.1016/j.bbapap.2009.11.011. Epub 2009 Nov 18.
We previously showed that coagulation factor Xa (FXa) enhances activation of the fibrinolysis zymogen plasminogen to plasmin by tissue plasminogen activator (tPA). Implying that proteolytic modulation occurs in situ, intact FXa (FXaalpha) must be sequentially cleaved by plasmin or autoproteolysis, producing FXabeta and Xa33/13, which acquire necessary plasminogen binding sites. The implicit function of Xa33/13 in plasmin generation has not been demonstrated, nor has FXaalpha/beta or Xa33/13 been studied in clot lysis experiments. We now report that purified Xa33/13 increases tPA-dependent plasmin generation by at least 10-fold. Western blots confirmed that in situ conversion of FXaalpha/beta to Xa33/13 correlated to enhanced plasmin generation. Chemical modification of the FXaalpha active site resulted in the proteolytic generation of a product distinct from Xa33/13 and inhibited the enhancement of plasminogen activation. Identical modification of Xa33/13 had no effect on tPA cofactor function. Due to its overwhelming concentration in the clot, fibrin is the accepted tPA cofactor. Nevertheless, at the functional level of tPA that circulates in plasma, FXaalpha/beta or Xa33/13 greatly reduced purified fibrin lysis times by as much as 7-fold. This effect was attenuated at high levels of tPA, suggesting a role when intrinsic plasmin generation is relatively low. FXaalpha/beta or Xa33/13 did not alter the apparent size of fibrin degradation products, but accelerated the initial cleavage of fibrin to fragment X, which is known to optimize the tPA cofactor activity of fibrin. Thus, coagulation FXaalpha undergoes proteolytic modulation to enhance fibrinolysis, possibly by priming the tPA cofactor function of fibrin.
我们之前的研究表明,凝血因子Xa(FXa)可增强组织型纤溶酶原激活物(tPA)将纤溶酶原激活为纤溶酶的过程。这意味着蛋白水解调节发生在原位,完整的FXa(FXaα)必须依次被纤溶酶或自身蛋白水解作用切割,产生FXaβ和Xa33/13,它们获得了必要的纤溶酶原结合位点。Xa33/13在纤溶酶生成中的潜在功能尚未得到证实,在凝块溶解实验中也未对FXaα/β或Xa33/13进行研究。我们现在报告,纯化的Xa33/13可使tPA依赖的纤溶酶生成增加至少10倍。蛋白质印迹法证实,FXaα/β向Xa33/13的原位转化与纤溶酶生成增强相关。对FXaα活性位点进行化学修饰导致产生一种与Xa33/13不同的蛋白水解产物,并抑制了纤溶酶原激活的增强。对Xa33/13进行相同的修饰对tPA辅因子功能没有影响。由于纤维蛋白在凝块中的浓度极高,它是公认的tPA辅因子。然而,在血浆中循环的tPA功能水平上,FXaα/β或Xa33/13可将纯化的纤维蛋白溶解时间大幅缩短多达7倍。在高浓度tPA时这种作用减弱,表明在内在纤溶酶生成相对较低时发挥作用。FXaα/β或Xa33/13没有改变纤维蛋白降解产物的表观大小,但加速了纤维蛋白向片段X的初始切割,已知片段X可优化纤维蛋白的tPA辅因子活性。因此,凝血FXaα经历蛋白水解调节以增强纤维蛋白溶解,可能是通过启动纤维蛋白的tPA辅因子功能来实现的。