Suppr超能文献

用于生物能源和生物燃料应用的短轮伐期木本作物。

Short-rotation woody crops for bioenergy and biofuels applications.

作者信息

Hinchee Maud, Rottmann William, Mullinax Lauren, Zhang Chunsheng, Chang Shujun, Cunningham Michael, Pearson Leslie, Nehra Narender

机构信息

ArborGen, LLC, P.O. Box 840001, Summerville, SC 29484 USA.

出版信息

In Vitro Cell Dev Biol Plant. 2009 Dec;45(6):619-629. doi: 10.1007/s11627-009-9235-5. Epub 2009 Aug 26.

Abstract

Purpose-grown trees will be part of the bioenergy solution in the United States, especially in the Southeast where plantation forestry is prevalent and economically important. Trees provide a "living biomass inventory" with existing end-use markets and associated infrastructure, unlike other biomass species such as perennial grasses. The economic feasibility of utilizing tree biomass is improved by increasing productivity through alternative silvicultural systems, improved breeding and biotechnology. Traditional breeding and selection, as well as the introduction of genes for improved growth and stress tolerance, have enabled high growth rates and improved site adaptability in trees grown for industrial applications. An example is the biotechnology-aided improvement of a highly productive tropical Eucalyptus hybrid, Eucalyptus grandis x Eucalyptus urophylla. This tree has acquired freeze tolerance by the introduction of a plant transcription factor that up-regulates the cold-response pathways and makes possible commercial plantings in the Southeastern United States. Transgenic trees with reduced lignin, modified lignin, or increased cellulose and hemicellulose will improve the efficiency of feedstock conversion into biofuels. Reduced lignin trees have been shown to improve efficiency in the pre-treatment step utilized in fermentation systems for biofuels production from lignocellulosics. For systems in which thermochemical or gasification approaches are utilized, increased density will be an important trait, while increased lignin might be a desired trait for direct firing or co-firing of wood for energy. Trees developed through biotechnology, like all transgenic plants, need to go through the regulatory process, which involves biosafety and risk assessment analyses prior to commercialization.

摘要

定向培育的树木将成为美国生物能源解决方案的一部分,尤其是在东南部地区,那里人工造林很普遍且具有重要的经济意义。与多年生草本植物等其他生物质种类不同,树木提供了一个具有现有终端用途市场和相关基础设施的“活体生物质库存”。通过替代造林系统、改良育种和生物技术提高生产力,可改善利用树木生物质的经济可行性。传统的育种和选择,以及引入用于改善生长和抗逆性的基因,已使用于工业用途的树木实现了高生长率并提高了对立地条件的适应性。一个例子是通过生物技术辅助改良的高产热带桉树杂交种——巨桉×尾叶桉。通过引入一种上调冷响应途径的植物转录因子,这种树获得了抗冻性,从而使得在美国东南部进行商业化种植成为可能。木质素含量降低、木质素经过改良、纤维素和半纤维素含量增加的转基因树木,将提高原料转化为生物燃料的效率。已证明木质素含量降低的树木可提高用于从木质纤维素生产生物燃料的发酵系统预处理步骤的效率。对于采用热化学或气化方法的系统,密度增加将是一个重要特性,而木质素含量增加可能是用于木材直接燃烧或混烧以获取能源的理想特性。通过生物技术培育的树木,与所有转基因植物一样,需要经过监管程序,这包括在商业化之前进行生物安全和风险评估分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2653/2778772/3b4151058b27/11627_2009_9235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验