Suppr超能文献

啮齿动物心脏中葡萄糖对基因表达的调控机制探讨

Proposed regulation of gene expression by glucose in rodent heart.

作者信息

Young Martin E, Yan Jie, Razeghi Peter, Cooksey Robert C, Guthrie Patrick H, Stepkowski Stanislaw M, McClain Donald A, Tian Rong, Taegtmeyer Heinrich

机构信息

USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA.

出版信息

Gene Regul Syst Bio. 2007 Nov 5;1:251-62. doi: 10.4137/grsb.s222.

Abstract

BACKGROUND

During pressure overload-induced hypertrophy, unloading-induced atrophy, and diabetes mellitus, the heart induces 'fetal' genes (e.g. myosin heavy chain beta; mhc beta).

HYPOTHESIS

We propose that altered glucose homeostasis within the cardiomyocyte acts as a central mechanism for the regulation of gene expression in response to environmental stresses. The evidence is as follows.

METHODS AND RESULTS

Forced glucose uptake both ex vivo and in vivo results in mhc isoform switching. Restricting dietary glucose prevents mhc isoform switching in hearts of both GLUT1-Tg mice and rats subjected to pressure overload-induced hypertrophy. Thus, glucose availability correlates with mhc isoform switching under all conditions investigated. A potential mechanism by which glucose affects gene expression is through O-linked glycosylation of specific transcription factors. Glutamine:fructose-6-phosphate amidotransferase (GFAT) catalyzes the flux generating step in UDP-N-acetylglucosamine biosynthesis, the rate determining metabolite in protein glycosylation. Ascending aortic constriction increased intracellular levels of UDP-N-acetylglucosamine, and the expression of gfat2, but not gfat1, in the rat heart.

CONCLUSIONS

Collectively, the results strongly suggest glucose-regulated gene expression in the heart, and the involvement of glucose metabolites in isoform switching of sarcomeric proteins characteristic for the fetal gene program.

摘要

背景

在压力超负荷诱导的肥大、卸载诱导的萎缩以及糖尿病过程中,心脏会诱导“胎儿”基因(如肌球蛋白重链β;mhcβ)表达。

假说

我们提出,心肌细胞内葡萄糖稳态的改变是响应环境应激调控基因表达的核心机制。证据如下。

方法与结果

体外和体内强制葡萄糖摄取均导致mhc亚型转换。限制饮食中的葡萄糖可防止GLUT1转基因小鼠和压力超负荷诱导肥大的大鼠心脏发生mhc亚型转换。因此,在所研究的所有条件下,葡萄糖可用性与mhc亚型转换相关。葡萄糖影响基因表达的一个潜在机制是通过特定转录因子的O-连接糖基化。谷氨酰胺:果糖-6-磷酸酰胺转移酶(GFAT)催化UDP-N-乙酰葡糖胺生物合成中的通量生成步骤,UDP-N-乙酰葡糖胺是蛋白质糖基化中的限速代谢物。升主动脉缩窄增加了大鼠心脏中UDP-N-乙酰葡糖胺的细胞内水平以及gfat2而非gfat1的表达。

结论

总体而言,这些结果强烈提示心脏中存在葡萄糖调节的基因表达,以及葡萄糖代谢物参与胎儿基因程序特有的肌节蛋白亚型转换。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/401b/2759127/fe54d7924a90/grsb-2007-251f1.jpg

相似文献

1
Proposed regulation of gene expression by glucose in rodent heart.
Gene Regul Syst Bio. 2007 Nov 5;1:251-62. doi: 10.4137/grsb.s222.
2
Cardiomyocyte protein O-GlcNAcylation is regulated by GFAT1 not GFAT2.
Biochem Biophys Res Commun. 2021 Dec 17;583:121-127. doi: 10.1016/j.bbrc.2021.10.056. Epub 2021 Oct 29.
4
6
GFAT2 mediates cardiac hypertrophy through HBP-O-GlcNAcylation-Akt pathway.
iScience. 2021 Nov 26;24(12):103517. doi: 10.1016/j.isci.2021.103517. eCollection 2021 Dec 17.
7
Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure.
Physiol Genomics. 2012 Feb 1;44(2):162-72. doi: 10.1152/physiolgenomics.00016.2011. Epub 2011 Nov 29.

引用本文的文献

1
Role of post-translational modifications of Sp1 in cardiovascular diseases.
Front Cell Dev Biol. 2024 Aug 26;12:1453901. doi: 10.3389/fcell.2024.1453901. eCollection 2024.
2
Protein glycosylation in cardiovascular health and disease.
Nat Rev Cardiol. 2024 Aug;21(8):525-544. doi: 10.1038/s41569-024-00998-z. Epub 2024 Mar 18.
3
A Comprehensive Review of Cancer Drug-Induced Cardiotoxicity in Blood Cancer Patients: Current Perspectives and Therapeutic Strategies.
Curr Treat Options Oncol. 2024 Apr;25(4):465-495. doi: 10.1007/s11864-023-01175-z. Epub 2024 Feb 19.
4
Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals.
J Biol Chem. 2024 Feb;300(2):105616. doi: 10.1016/j.jbc.2023.105616. Epub 2023 Dec 29.
6
Cardio-Onco-Metabolism - Metabolic vulnerabilities in cancer and the heart.
J Mol Cell Cardiol. 2022 Oct;171:71-80. doi: 10.1016/j.yjmcc.2022.06.008. Epub 2022 Jun 28.
8
Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer.
Nat Rev Cardiol. 2022 Jun;19(6):414-425. doi: 10.1038/s41569-022-00698-6. Epub 2022 Apr 19.
9
GFAT2 mediates cardiac hypertrophy through HBP-O-GlcNAcylation-Akt pathway.
iScience. 2021 Nov 26;24(12):103517. doi: 10.1016/j.isci.2021.103517. eCollection 2021 Dec 17.
10
Cardio-Oncology: Understanding the Intersections Between Cardiac Metabolism and Cancer Biology.
JACC Basic Transl Sci. 2021 Jul 28;6(8):705-718. doi: 10.1016/j.jacbts.2021.05.008. eCollection 2021 Aug.

本文引用的文献

1
Long-term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress.
Circulation. 2007 Aug 21;116(8):901-9. doi: 10.1161/CIRCULATIONAHA.107.691253. Epub 2007 Aug 6.
2
The nuclear receptor LXR is a glucose sensor.
Nature. 2007 Jan 11;445(7124):219-23. doi: 10.1038/nature05449. Epub 2006 Dec 24.
4
Studies on myocardial metabolism. IV. Myocardial metabolism in diabetes.
Am J Med. 1955 Mar;18(3):385-96. doi: 10.1016/0002-9343(55)90218-7.
7
Hypoxia in vivo decreases peroxisome proliferator-activated receptor alpha-regulated gene expression in rat heart.
Biochem Biophys Res Commun. 2001 Sep 14;287(1):5-10. doi: 10.1006/bbrc.2001.5541.
8
PPAR signaling in the control of cardiac energy metabolism.
Trends Cardiovasc Med. 2000 Aug;10(6):238-45. doi: 10.1016/s1050-1738(00)00077-3.
9
Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc.
Science. 2001 Mar 23;291(5512):2376-8. doi: 10.1126/science.1058714.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验