Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India.
Protein Sci. 2010 Jan;19(1):111-23. doi: 10.1002/pro.292.
Mycobacterium leprae recA harbors an in-frame insertion sequence that encodes an intein homing endonuclease (PI-MleI). Most inteins (intein endonucleases) possess two conserved LAGLIDADG (DOD) motifs at their active center. A common feature of LAGLIDADG-type homing endonucleases is that they recognize and cleave the same or very similar DNA sequences. However, PI-MleI is distinctive from other members of the family of LAGLIDADG-type HEases for its modular structure with functionally separable domains for DNA-binding and cleavage, each with distinct sequence preferences. Sequence alignment analyses of PI-MleI revealed three putative LAGLIDADG motifs; however, there is conflicting bioinformatics data in regard to their identity and specific location within the intein polypeptide. To resolve this conflict and to determine the active-site residues essential for DNA target site recognition and double-stranded DNA cleavage, we performed site-directed mutagenesis of presumptive catalytic residues in the LAGLIDADG motifs. Analysis of target DNA recognition and kinetic parameters of the wild-type PI-MleI and its variants disclosed that the two amino acid residues, Asp(122) (in Block C) and Asp(193) (in functional Block E), are crucial to the double-stranded DNA endonuclease activity, whereas Asp(218) (in pseudo-Block E) is not. However, despite the reduced catalytic activity, the PI-MleI variants, like the wild-type PI-MleI, generated a footprint of the same length around the insertion site. The D122T variant showed significantly reduced catalytic activity, and D122A and D193A mutations although failed to affect their DNA-binding affinities, but abolished the double-stranded DNA cleavage activity. On the other hand, D122C variant showed approximately twofold higher double-stranded DNA cleavage activity, compared with the wild-type PI-MleI. These results provide compelling evidence that Asp(122) and Asp(193) in DOD motif I and II, respectively, are bona fide active-site residues essential for DNA cleavage activity. The implications of these results are discussed in this report.
麻风分枝杆菌 recA 含有一个框内插入序列,该序列编码一个内含子归巢内切核酸酶(PI-MleI)。大多数内含子(内含子内切核酸酶)在其活性中心具有两个保守的 LAGLIDADG(DOD)基序。LAGLIDADG 型归巢内切核酸酶的一个共同特征是它们识别和切割相同或非常相似的 DNA 序列。然而,PI-MleI 与 LAGLIDADG 型 HEases 家族的其他成员不同,因为它具有模块化结构,具有用于 DNA 结合和切割的功能可分离结构域,每个结构域都具有独特的序列偏好。PI-MleI 的序列比对分析显示了三个推定的 LAGLIDADG 基序;然而,关于它们在内含子多肽中的身份和特定位置存在相互矛盾的生物信息学数据。为了解决这个冲突并确定识别 DNA 靶位点和双链 DNA 切割所必需的活性位点残基,我们对 LAGLIDADG 基序中的推定催化残基进行了定点突变。对野生型 PI-MleI 及其变体的靶 DNA 识别和动力学参数的分析表明,两个氨基酸残基,天冬氨酸(122)(在块 C 中)和天冬氨酸(193)(在功能块 E 中)对于双链 DNA 内切核酸酶活性至关重要,而天冬氨酸(218)(在假块 E 中)则不是。然而,尽管催化活性降低,PI-MleI 变体与野生型 PI-MleI 一样,在插入位点周围产生了相同长度的足迹。D122T 变体显示出明显降低的催化活性,并且 D122A 和 D193A 突变虽然没有影响它们的 DNA 结合亲和力,但却消除了双链 DNA 切割活性。另一方面,与野生型 PI-MleI 相比,D122C 变体显示出约两倍的双链 DNA 切割活性。这些结果提供了令人信服的证据,表明 DOD 基序 I 和 II 中的天冬氨酸(122)和天冬氨酸(193)分别是双链 DNA 切割活性所必需的真正活性位点残基。本报告讨论了这些结果的意义。