Suppr超能文献

利用临床试验中的首次或多次发作估计干预效果:重新审视 Andersen-Gill 模型。

Estimation of intervention effects using first or multiple episodes in clinical trials: The Andersen-Gill model re-examined.

机构信息

Biostatistics, Singapore Clinical Research Institute, Singapore, Singapore.

出版信息

Stat Med. 2010 Feb 10;29(3):328-36. doi: 10.1002/sim.3783.

Abstract

Randomized trials of interventions against infectious diseases are often analyzed using data on first or only episodes of disease, even when subsequent episodes have been recorded. It is often said that the Andersen-Gill (AG) model gives a biased estimate of intervention effect if there is event dependency over time. We demonstrate that, in the presence of event dependency, an effective intervention may have an indirect effect on disease risk at time t(j) via its direct effect on disease risk at time t(i), i<j, and that the AG model estimates the total effect instead of the direct effect alone. From a clinical and public health perspective, estimation of the total effect is important. Previous simulation studies showed contradictory results about the performance of the AG model in the presence of unobserved heterogeneity across individuals. We show that some of the previous studies unintentionally created informative censoring in their data generating process by including only a certain maximum number of events per individual. We re-ran some previous simulations with and without altering this maximum. With reference to the situations often seen in pneumococcal vaccine trials, we evaluated the performance of the Cox model for time to first episode and the AG model for multiple episodes. We applied these models to re-analyze data from a pneumococcal conjugate vaccine trial. We maintain that a careful clarification of research purpose is needed before one can choose a statistical model, and that the AG model is useful in the estimation of the total effect of an intervention.

摘要

针对传染病干预措施的随机试验通常使用首次或唯一发病的疾病数据进行分析,即使后续发病情况已被记录。人们常说,如果随着时间的推移事件存在依赖性,那么 Andersen-Gill(AG)模型会对干预效果产生有偏估计。我们证明,在存在事件依赖性的情况下,有效的干预措施可能会通过其对时间 t(i)的疾病风险的直接效应,对时间 t(j)的疾病风险产生间接效应,而 AG 模型估计的是总效应,而不仅仅是直接效应。从临床和公共卫生的角度来看,估计总效应很重要。先前的模拟研究表明,AG 模型在个体间存在未观察到的异质性时的表现结果存在矛盾。我们表明,以前的一些研究在数据生成过程中通过仅包含每个个体一定数量的事件,无意中造成了信息性删失。我们重新运行了一些具有和不具有这种最大限制的先前模拟。参考在肺炎球菌疫苗试验中经常出现的情况,我们评估了 Cox 模型(用于首次发病时间)和 AG 模型(用于多次发病)的性能。我们应用这些模型重新分析了肺炎球菌结合疫苗试验的数据。我们坚持认为,在选择统计模型之前,需要仔细澄清研究目的,并且 AG 模型在干预总效应的估计中是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验