Suppr超能文献

肝素和葡聚糖硫酸盐与介观蛋白质纳米孔的相互作用。

Interaction of heparins and dextran sulfates with a mesoscopic protein nanopore.

机构信息

Laboratory of Membrane Biophysics, Department of Biophysics, Federal University of Pernambuco, Recife, Brazil.

出版信息

Biophys J. 2009 Dec 2;97(11):2894-903. doi: 10.1016/j.bpj.2009.09.019.

Abstract

A mechanism of how polyanions influence the channel formed by Staphylococcus aureus alpha-hemolysin is described. We demonstrate that the probability of several types of polyanions to block the ion channel depends on the presence of divalent cations and the polyanion molecular weight and concentration. For heparins, a 10-fold increase in molecular weight decreases the half-maximal inhibitory concentration, IC(50), nearly 10(4)-fold. Dextran sulfates were less effective at blocking the channel. The polyanions are significantly more effective at reducing the conductance when added to the trans side of this channel. Lastly, the effectiveness of heparins on the channel conductance correlated with their influence on the zeta-potential of liposomes. A model that includes the binding of polyanions to the channel-membrane complex via Ca(2+)-bridges and the asymmetry of the channel structure describes the data adequately. Analysis of the single channel current noise of wild-type and site-directed mutant versions of alpha-hemolysin channels suggests that a single polyanion enters the pore due to electrostatic forces and physically blocks the ion conduction path. The results might be of interest for pharmacology, biomedicine, and research aiming to design mesoscopic pore blockers.

摘要

描述了多阴离子影响金黄色葡萄球菌α-溶血素形成的通道的机制。我们证明了几种类型的多阴离子阻断离子通道的概率取决于二价阳离子的存在以及多阴离子的分子量和浓度。对于肝素,分子量增加 10 倍,半抑制浓度(IC50)降低近 104倍。硫酸葡聚糖在阻断通道方面的效果较差。当多阴离子添加到通道的跨膜侧时,对电导的抑制作用更为显著。最后,肝素对通道电导的影响与其对脂质体 ζ-电位的影响相关。该模型充分描述了包括通过 Ca2+-桥结合多阴离子到通道-膜复合物以及通道结构的不对称性的实验数据。对野生型和定点突变的α-溶血素通道的单通道电流噪声的分析表明,由于静电力的作用,单个多阴离子进入孔内并物理阻断离子传导路径。这些结果可能对药理学、生物医学和旨在设计介观孔阻断剂的研究具有重要意义。

相似文献

1
Interaction of heparins and dextran sulfates with a mesoscopic protein nanopore.
Biophys J. 2009 Dec 2;97(11):2894-903. doi: 10.1016/j.bpj.2009.09.019.
2
The hinge portion of the S. aureus alpha-toxin crosses the lipid bilayer and is part of the trans-mouth of the channel.
Biochim Biophys Acta. 1997 Oct 2;1329(1):51-60. doi: 10.1016/s0005-2736(97)00087-4.
3
Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.
Biophys J. 2005 Jun;88(6):3745-61. doi: 10.1529/biophysj.104.058727. Epub 2005 Mar 11.
4
Impact of distant charge reversals within a robust beta-barrel protein pore.
J Phys Chem B. 2010 Jul 8;114(26):8750-9. doi: 10.1021/jp101311s.
5
Formation of individual protein channels in lipid bilayers suspended in nanopores.
Colloids Surf B Biointerfaces. 2009 Oct 15;73(2):325-31. doi: 10.1016/j.colsurfb.2009.06.006. Epub 2009 Jun 10.
6
Heparin influence on alpha-staphylotoxin formed channel.
Biochim Biophys Acta. 1999 Feb 4;1417(1):167-82. doi: 10.1016/s0005-2736(98)00244-2.
9
Genetically engineered metal ion binding sites on the outside of a Channel's transmembrane beta-barrel.
Biophys J. 1999 Feb;76(2):837-45. doi: 10.1016/S0006-3495(99)77247-4.
10
Urea facilitates the translocation of single-stranded DNA and RNA through the alpha-hemolysin nanopore.
Biophys J. 2010 May 19;98(9):1856-63. doi: 10.1016/j.bpj.2009.12.4333.

引用本文的文献

1
Alpha-hemolysin nanopore allows discrimination of the microcystins variants.
RSC Adv. 2019 May 10;9(26):14683-14691. doi: 10.1039/c8ra10384d. eCollection 2019 May 9.
3
Channel-forming bacterial toxins in biosensing and macromolecule delivery.
Toxins (Basel). 2014 Aug 21;6(8):2483-540. doi: 10.3390/toxins6082483.

本文引用的文献

1
Inhibition of S. aureus alpha-hemolysin and B. anthracis lethal toxin by beta-cyclodextrin derivatives.
Bioorg Med Chem. 2007 Aug 15;15(16):5424-31. doi: 10.1016/j.bmc.2007.05.058. Epub 2007 May 26.
2
Bladder defense molecules, urothelial differentiation, urinary biomarkers, and interstitial cystitis.
Urology. 2007 Apr;69(4 Suppl):17-23. doi: 10.1016/j.urology.2006.03.083.
4
Evidence that clustered phosphocholine head groups serve as sites for binding and assembly of an oligomeric protein pore.
J Biol Chem. 2006 Sep 8;281(36):26014-21. doi: 10.1074/jbc.M601960200. Epub 2006 Jul 9.
5
Blocking of an ion channel by a highly charged drug: modeling the effects of applied voltage, electrolyte concentration, and drug concentration.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041914. doi: 10.1103/PhysRevE.73.041914. Epub 2006 Apr 13.
6
Heparan sulfate proteoglycans and the emergence of neuronal connectivity.
Curr Opin Neurobiol. 2006 Feb;16(1):40-51. doi: 10.1016/j.conb.2006.01.011. Epub 2006 Jan 18.
7
Identification of glycosaminoglycan-binding sites within hepatitis C virus envelope glycoprotein E2*.
J Viral Hepat. 2005 Nov;12(6):584-93. doi: 10.1111/j.1365-2893.2005.00647.x.
8
Protein electrostriction: a possibility of elastic deformation of the alpha-hemolysin channel by the applied field.
Eur Biophys J. 2005 Nov;34(8):997-1006. doi: 10.1007/s00249-005-0485-9. Epub 2005 Jul 15.
9
Sulfate- and size-dependent polysaccharide modulation of AMPA receptor properties.
J Neurosci Res. 2004 Feb 1;75(3):408-16. doi: 10.1002/jnr.10871.
10
Interactions between liposomes and cations in aqueous solution.
J Liposome Res. 2003 May;13(2):131-45. doi: 10.1081/lpr-120020316.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验