Nantes Université, CNRS, GEPEA UMR-CNRS 6144, Bd de l'Université, CRTT-BP 406, 44602 Saint-Nazaire Cedex, France.
Biotechnol Prog. 2010 Mar-Apr;26(2):431-40. doi: 10.1002/btpr.356.
The validity of a simple, reliable, and useful recently published formula enabling to calculate the maximum volumetric biomass productivities in photobioreactors (PBRs) was investigated through the cultivation of the microalga Chlamydomonas reinhardtii. Experimental maximum kinetic performances accurately obtained in two different, artificially lightened torus-plane and cylindrical reactors having the same specific illuminated area confirmed the availability, power, and robustness of such formula. The predictive kinetic parameters previously proposed and validated with cyanobacteria were then proved general and robust in case of eukaryotic microalgae, as postulated in the founding article. In this case, an additional criterion requiring rigorous control of the working illuminated fraction gamma = 1 +/- (15%) inside the reactor is demonstrated. For this, the usefulness and reliability of a generalized two-flux model accurately describing the radiation field inside turbid culture media of C. reinhardtii were also established in this article. These important results contribute to identify the main engineering factors governing light-limited PBRs functioning and then to clarify some misinterpretations widely reported in the literature. Together with the referenced previous work, this article gives a framework toward optimal conception of PBRs on a strong physical basis.
通过培养莱茵衣藻,研究了一种简单、可靠且实用的最新发布公式,以计算光生物反应器(PBR)中最大容积生物量生产力的有效性。在两个具有相同特定光照面积的不同人工照明的环面-平面和圆柱形反应器中准确获得的实验最大动力学性能证实了该公式的可用性、功效和鲁棒性。先前提出并通过蓝藻验证的预测动力学参数随后被证明在真核微藻中是通用和稳健的,正如创始文章中所假设的。在这种情况下,需要严格控制反应器内工作光照部分γ=1±(15%)的附加标准得到证明。为此,本文还建立了一个通用的双通量模型,该模型可以准确描述莱茵衣藻浊度培养介质内部的辐射场,该模型具有实用性和可靠性。这些重要结果有助于确定控制光限制 PBR 运行的主要工程因素,从而澄清文献中广泛报道的一些误解。本文与参考的先前工作一起,为基于强大物理基础的 PBR 最佳设计提供了一个框架。