Suppr超能文献

心脏肾上腺素能控制与心房颤动。

Cardiac adrenergic control and atrial fibrillation.

机构信息

British Heart Foundation Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.

出版信息

Naunyn Schmiedebergs Arch Pharmacol. 2010 Mar;381(3):235-49. doi: 10.1007/s00210-009-0474-0. Epub 2009 Dec 4.

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and it causes substantial mortality. The autonomic nervous system, and particularly the adrenergic/cholinergic balance, has a profound influence on the occurrence of AF. Adrenergic stimulation from catecholamines can cause AF in patients. In human atrium, catecholamines can affect each of the electrophysiological mechanisms of AF initiation and/or maintenance. Catecholamines may produce membrane potential oscillations characteristic of afterdepolarisations, by increasing Ca(2+) current, Ca(2+) and consequent Na(+)-Ca(2+) exchange, and may also enhance automaticity. Catecholamines might affect reentry, by altering excitability or conduction, rather than action potential terminal repolarisation or refractory period. However, which arrhythmia mechanisms predominate is unclear, and likely depends on cardiac pathology and adrenergic tone. Heart failure (HF), a major cause of AF, causes adrenergic activation and adaptational changes, remodelling, of atrial electrophysiology, Ca(2+) homeostasis, and adrenergic responses. Chronic AF also remodels these, but differently to HF. Myocardial infarction and AF cause neural remodelling that also may promote AF. beta-Adrenoceptor antagonists (beta-blockers) are used in the treatment of AF, mainly to control the ventricular rate, by slowing atrioventricular conduction. beta-Blockers also reduce the incidence of AF, particularly in HF or after cardiac surgery, when adrenergic tone is high. Furthermore, the chronic treatment of patients with beta-blockers remodels the atria, with a potentially antiarrhythmic increase in the refractory period. Therefore, the suppression of AF by beta-blocker treatment may involve an attenuation of arrhythmic activity that is caused by increased Ca(2+), coupled with effects of adaptation to the treatment. An improved understanding of the involvement of the adrenergic system and its control in basic mechanisms of AF under differing cardiac pathologies might lead to better treatments.

摘要

心房颤动(AF)是最常见的心律失常,它会导致大量死亡。自主神经系统,特别是肾上腺素能/胆碱能平衡,对 AF 的发生有深远的影响。儿茶酚胺的肾上腺素能刺激可导致患者发生 AF。在人类心房中,儿茶酚胺可通过增加 Ca(2+)电流、[Ca(2+)]i 和随后的 Na(+)-Ca(2+)交换来影响 AF 起始和/或维持的每一个电生理机制。儿茶酚胺可能会产生特征性的后除极膜电位振荡,从而增加自动性。儿茶酚胺可能会通过改变兴奋性或传导,而不是动作电位终末复极或不应期来影响折返,而不是动作电位终末复极或不应期。然而,哪种心律失常机制占主导地位尚不清楚,而且可能取决于心脏病理学和肾上腺素能张力。心力衰竭(HF)是 AF 的主要原因,它会导致肾上腺素能激活和适应性改变,改变心房电生理、Ca(2+)稳态和肾上腺素能反应的重塑。慢性 AF 也会对此进行重塑,但与 HF 不同。心肌梗死和 AF 导致神经重塑,也可能促进 AF。β-肾上腺素能受体拮抗剂(β-受体阻滞剂)用于治疗 AF,主要通过减慢房室传导来控制心室率。β-受体阻滞剂还可降低 AF 的发生率,特别是在 HF 或心脏手术后,此时肾上腺素能张力较高。此外,β-受体阻滞剂对患者的慢性治疗会重塑心房,使不应期潜在地增加,从而具有抗心律失常作用。因此,β-受体阻滞剂治疗对 AF 的抑制可能涉及到通过抑制增加的 [Ca(2+)]i 引起的心律失常活动,同时还可能与治疗的适应作用有关。更好地了解在不同心脏病理条件下 AF 的基本机制中涉及的肾上腺素能系统及其控制,可能会导致更好的治疗方法。

相似文献

1
Cardiac adrenergic control and atrial fibrillation.
Naunyn Schmiedebergs Arch Pharmacol. 2010 Mar;381(3):235-49. doi: 10.1007/s00210-009-0474-0. Epub 2009 Dec 4.
4
Cellular bases for human atrial fibrillation.
Heart Rhythm. 2008 Jun;5(6 Suppl):S1-6. doi: 10.1016/j.hrthm.2008.01.016. Epub 2008 Jan 17.
5
Chronic myocardial infarction promotes atrial action potential alternans, afterdepolarizations, and fibrillation.
Cardiovasc Res. 2013 Jul 1;99(1):215-24. doi: 10.1093/cvr/cvt087. Epub 2013 Apr 8.
6
Atrial L-type Ca2+ currents and human atrial fibrillation.
Circ Res. 1999 Sep 3;85(5):428-36. doi: 10.1161/01.res.85.5.428.
7
Pharmacologic management of atrial fibrillation: current therapeutic strategies.
Am Heart J. 2001 Feb;141(2 Suppl):S15-21. doi: 10.1067/mhj.2001.109952.
8
Anti-adrenergic effects of endothelin on human atrial action potentials are potentially anti-arrhythmic.
J Mol Cell Cardiol. 2006 May;40(5):717-24. doi: 10.1016/j.yjmcc.2006.01.012. Epub 2006 Apr 17.
9
Tetrodotoxin-Sensitive Neuronal-Type Na Channels: A Novel and Druggable Target for Prevention of Atrial Fibrillation.
J Am Heart Assoc. 2020 Jun 2;9(11):e015119. doi: 10.1161/JAHA.119.015119. Epub 2020 May 29.

引用本文的文献

1
Phenylephrine and the risk of atrial fibrillation in critically ill patients: a multi-centre study from eICU database.
Front Pharmacol. 2025 Mar 26;16:1478961. doi: 10.3389/fphar.2025.1478961. eCollection 2025.
2
"Pharmacological" analysis of atrial fibrillation maintenance mechanism: reentry, wavelets, or focal?
Front Cardiovasc Med. 2025 Jan 24;12:1447542. doi: 10.3389/fcvm.2025.1447542. eCollection 2025.
3
Accelerated atrial pacing reduces left-heart filling pressure: a combined clinical-computational study.
Eur Heart J. 2024 Dec 7;45(46):4953-4964. doi: 10.1093/eurheartj/ehae718.
4
Catecholamine Vasopressors and the Risk of Atrial Fibrillation After Noncardiac Surgery: A Prospective Observational Study.
Drug Des Devel Ther. 2024 Nov 15;18:5193-5202. doi: 10.2147/DDDT.S474818. eCollection 2024.
5
Identification of necroptosis-related diagnostic biomarkers in coronary heart disease.
Heliyon. 2024 Apr 25;10(9):e30269. doi: 10.1016/j.heliyon.2024.e30269. eCollection 2024 May 15.
6
Research on atrial fibrillation mechanisms and prediction of therapeutic prospects: focus on the autonomic nervous system upstream pathways.
Front Cardiovasc Med. 2023 Nov 8;10:1270452. doi: 10.3389/fcvm.2023.1270452. eCollection 2023.
7
Atrial fibrillation, electroconvulsive therapy, stroke risk, and anticoagulation.
Egypt Heart J. 2023 Nov 27;75(1):94. doi: 10.1186/s43044-023-00409-7.
8
Insomnia and Early Incident Atrial Fibrillation: A 16-Year Cohort Study of Younger Men and Women Veterans.
J Am Heart Assoc. 2023 Oct 17;12(20):e030331. doi: 10.1161/JAHA.123.030331. Epub 2023 Oct 4.
10
Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation.
Cardiovasc Drugs Ther. 2025 Apr;39(2):435-458. doi: 10.1007/s10557-023-07491-8. Epub 2023 Sep 13.

本文引用的文献

1
Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade.
Pflugers Arch. 2012 Apr;463(4):537-48. doi: 10.1007/s00424-011-1061-z. Epub 2011 Dec 8.
2
Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure.
Circ Arrhythm Electrophysiol. 2008 Jun 1;1(2):93-102. doi: 10.1161/CIRCEP.107.754788. Epub 2008 Apr 30.
3
Mechanosensitive channels in striated muscle and the cardiovascular system: not quite a stretch anymore.
J Cardiovasc Pharmacol. 2009 Aug;54(2):116-22. doi: 10.1097/FJC.0b013e3181aa233f.
4
Novel approaches for pharmacological management of atrial fibrillation.
Drugs. 2009;69(7):757-74. doi: 10.2165/00003495-200969070-00001.
5
Atrial cellular electrophysiological changes in patients with ventricular dysfunction may predispose to AF.
Heart Rhythm. 2009 Apr;6(4):445-51. doi: 10.1016/j.hrthm.2008.12.028. Epub 2008 Dec 31.
6
What role does modulation of the ryanodine receptor play in cardiac inotropy and arrhythmogenesis?
J Mol Cell Cardiol. 2009 Apr;46(4):474-81. doi: 10.1016/j.yjmcc.2008.12.005. Epub 2008 Dec 25.
7
Differences in intracellular calcium homeostasis between atrial and ventricular myocytes.
J Mol Cell Cardiol. 2009 Apr;46(4):463-73. doi: 10.1016/j.yjmcc.2008.11.003. Epub 2008 Nov 14.
8
Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics.
J Cardiovasc Pharmacol. 2008 Oct;52(4):293-9. doi: 10.1097/FJC.0b013e318171924d.
9
Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current.
Circ Res. 2008 Oct 10;103(8):845-54. doi: 10.1161/CIRCRESAHA.108.175463. Epub 2008 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验